Thixotropic Behavior in Defining Particle Packing Density of Highly Filled AP/HTPB-Based Propellant

Restasari, Afni and Abdillah, Luthfia Hajar and Ardianingsih, Retno and Sitompul, Hamonangan Rekso Diputro and Budi, Rika Suwana and Hartaya, Kendra and Wibowo, Heri Budi (2021) Thixotropic Behavior in Defining Particle Packing Density of Highly Filled AP/HTPB-Based Propellant. Symmetry, 13 (10). p. 1767. ISSN 2073-8994

Full text not available from this repository.

Abstract

An alarming, asymmetric flame in rocket combustion originates from a composite solid propellant (CSP) containing defects. The defects are the result of a composition that exceeds the maximum particle packing density. Based on the structure analysis of CSP, the addition of plasticizer causes the correlation between the viscosity of CSP slurry and particle packing density to become uncertain. This work aims to investigate the influence of thixotropic behavior on the maximum particle packing density of CSP. A CSP with different thixotropic behavior was successfully produced using aluminum/plasticizer dioctyl adipate (DOA) of 12–24. During the curing process, viscosity and stress–growth were investigated. The structure of the CSP was defined using X-ray radiography. It is remarkably observed that the peak of thixotropy occurred at the 15th minute of the curing process. The particle packing density of CSP can be decisive for the relative viscosity at the peak time of thixotropic behavior. The CSP with the highest relative viscosity at the peak time was revealed to have voids in the upper part of the CSP. Thus, this parameter was proven to change the preceding parameter, viscosity that was measured at the end of mixing. Based on the stress–growth analysis, it is conceivable that the mechanism involves the time-dependent diffusion of DOA in weakening aluminum agglomerates.

Item Type: Article
Uncontrolled Keywords: rheology; highly filled polymer; deformation; thixotropy; agglomeration; plasticizer; particle packing; defects; propellant; stress
Subjects: Missile Technology
Combustion, Engines, & Propellants
Depositing User: Rizzal Rosiyan
Date Deposited: 17 Dec 2025 04:16
Last Modified: 17 Dec 2025 04:16
URI: https://karya.brin.go.id/id/eprint/56629

Actions (login required)

View Item
View Item