Falah, Annisa Nur and Andriyana, Yudhie and Ruchjana, Budi Nurani and Hermawan, Eddy and Harjana, Teguh and Maryadi, Edy and Risyanto, Risyanto and Satyawardhana, Haries and Sipayung, Sinta Berliana (2024) An Expanded Spatial Durbin Model with Ordinary Kriging of Unobserved Big Climate Data. Mathematics, 12 (16). p. 2447. ISSN 2227-7390
Full text not available from this repository. (Request a copy)Abstract
Spatial models are essential in the prediction of climate phenomena because they can model the complex relationships between different locations. In this study, we discuss an expanded spatial Durbin model with ordinary kriging on unobserved locations (ESDMOK) to predict rainfall patterns in Java Island. The classical spatial Durbin model needed to be expanded to obtain a parameter estimation for each location. We combined this with ordinary kriging because the data were not available in some locations. The data were taken from the National Aeronautics and Space Administration Prediction of Worldwide Energy Resources (NASA POWER) website. Since climate data are big data, we implement a big data analytics approach, namely the data analytics life cycle method. As the exogenous variables, we used air temperature, humidity, solar irradiation, wind speed, and surface pressure. The authors developed an R-Shiny web applications to implement our proposed technique. Using our proposed technique, we obtained more accurate and reliable climate data prediction, indicated by the mean absolute percentage error (MAPE), which was equal to 1.956%. The greatest effect on rainfall was given by the surface pressure variable, and the smallest was wind speed.
| Item Type: | Article |
|---|---|
| Uncontrolled Keywords: | expanded spatial Durbin model; ordinary kriging; data analytics life cycle; climate data |
| Subjects: | Mathematical Sciences |
| Depositing User: | Maria Regina Karunia |
| Date Deposited: | 16 Dec 2025 04:12 |
| Last Modified: | 16 Dec 2025 04:12 |
| URI: | https://karya.brin.go.id/id/eprint/56477 |


Dimensions
Dimensions