Fermentation of Gracilaria verrucosa to Reduce Insoluble Non-Starch Polysaccharide (iNSP) Using Cellulolytic Bacteria Pseudomonas stutzeri (ISO2) for a Dietary Ingredient of Golden Rabbitfish, Siganus guttatus

Mulyaningrum, Sri Redjeki Hesti and Haryati, Haryati and Aslamyah, Siti and Laining, Asda and Suwoyo, Hidayat Suryanto (2023) Fermentation of Gracilaria verrucosa to Reduce Insoluble Non-Starch Polysaccharide (iNSP) Using Cellulolytic Bacteria Pseudomonas stutzeri (ISO2) for a Dietary Ingredient of Golden Rabbitfish, Siganus guttatus. HAYATI Journal of Biosciences, 30 (5). pp. 946-956. ISSN 1978-3019

Full text not available from this repository. (Request a copy)

Abstract

A series of experiments were conducted to optimize P. stutzeri (ISO2) fermentation in reducing the non-starch polysaccharide (NSP) of G. verrucosa as golden rabbitfish feed ingredient. A completely randomized experimental design in triplicates was used to optimize the pH of CMC media and the duration of fermentation. Using a 3 × 3 factorial design with two factors and triplicates, the optimum substrate-inoculum interaction was determined. Nine levels combination of G. verrucosa (G1 = 50 g; G2 = 100 g; G3 = 150 g) and P. stutzeri inoculum (P1 = 5%; P2 = 10%; P3 = 15%) were investigated. Cellulolytic activity (CA) of P. stutzeri was measured using UV-vis spectrophotometer, meanwhile chemical compound and physical characteristics of fermented G. verrucosa were evaluated using Fourier Transform Infra Red (FTIR) and Scanning Electron Microscope (SEM) respectively. Data on fermentation optimization were analyzed statistically using ANOVA. The result indicated pH, duration of fermentation and substrate-inoculum ratio had a significant effect on bacteria growth and CA (P<0.05). P. stutzeri grew well at pH 8, the fermentation process was ideally running in four days with (150 g-10%) G:P level. Hemicellulose was the most biodegradable NSP compared to cellulose and lignin. Fermented G. verrucosa (FG) had FTIR vibrations which indicated the conversion of the cell wall to reducing sugar. The fermentation process resulted in surface structure changes of G. verrucosa based on SEM photos.

Item Type: Article
Uncontrolled Keywords: aquafeed, bioprocessing, finfish, golden rabbitfish, macroalgae
Subjects: Agriculture & Food
Agriculture & Food > Food Technology
Depositing User: Saepul Mulyana
Date Deposited: 11 Dec 2025 03:23
Last Modified: 11 Dec 2025 03:23
URI: https://karya.brin.go.id/id/eprint/56079

Actions (login required)

View Item
View Item