A spatiotemporal prediction model for light pollution in conservation areas using remote sensing datasets

Riza, Lala Septem and Putra, Zulfikar Ali Yunara and Firdaus, Muhammad Fajar Yusuf and Trihutama, Fajar Zuliansyah and Izzuddin, Ahmad and Utama, Judhistira Aria and Samah, Khyrina Airin Fariza Abu and Herdiwijaya, Dhani and NQZ, Rinto Anugraha and Mumpuni, Emanuel Sungging (2023) A spatiotemporal prediction model for light pollution in conservation areas using remote sensing datasets. Decision Analytics Journal, 9. p. 100334. ISSN 27726622

Full text not available from this repository. (Request a copy)

Abstract

rtificial Light at Night (ALAN) significantly threatens protected areas from urbanization. As urbanization continues to grow, there is a need for forecasting future light pollution and ALAN for the protected areas in Indonesia. This study proposes a four-step computational model for forecasting spatial–temporal light pollution in nine protected areas in Indonesia via spatiotemporal modeling and linear models. The four steps for predicting spatial–temporal light pollution are (i) data collection, (ii) data pre-processing, (iii) model and prediction of population, and (iv) model and prediction of light pollution. Two critical data must be provided: population data from the review area and light pollution data generated by the Earth Observations Group (EOG) at the National Oceanic and Atmospheric Administration (NOAA)/National Centers for Environmental Information (NCEI). We are using nine conservation areas in Indonesia, including the Kuningan Botanical Gardens, Bosscha Observatory, Timau Kupang National Observatory, Sermo Reservoir, Mount Batur Geopark, Sewu Mountains Geopark, Mount Rinjani Geopark, Lake Toba Geopark, and Belitong Geopark. The developed model involves a linear model to predict ALAN with spatial–temporal modeling. We present long-term predictions for the next 20 years.

Item Type: Article
Uncontrolled Keywords: Spatiotemporal analysis; Linear model; Light pollution; Remote sensing; Geospatial; Conservation areas
Subjects: Taksonomi LAPAN > Teknologi Penginderaan Jauh > Hak Kekayaan Intelektual > Bidang Pemanfaatan Penginderaan Jauh
Taksonomi LAPAN > Teknologi Penginderaan Jauh > Penelitian, Pengkajian, dan Pengembangan > Teknologi dan Data Penginderaan Jauh
Depositing User: Saepul Mulyana
Date Deposited: 23 Oct 2025 06:44
Last Modified: 23 Oct 2025 06:44
URI: https://karya.brin.go.id/id/eprint/54590

Actions (login required)

View Item
View Item