SYNTHESIS OF LITHIUM TITANATE (Li4Ti5O12) BY ADDITION OF EXCESS LITHIUM CARBONATE (Li2CO3) IN TITANIUM DIOXIDE (TiO2) XEROGEL

Syahrial, Anne Zulfia and Priyono, Bambang and Yuwono, Akhmad Herman and Kartini, Evvy and Jodi, Heri and Johansyah, Johansyah (2016) SYNTHESIS OF LITHIUM TITANATE (Li4Ti5O12) BY ADDITION OF EXCESS LITHIUM CARBONATE (Li2CO3) IN TITANIUM DIOXIDE (TiO2) XEROGEL. International Journal of Technology (2015) 4, 7 (3). pp. 392-400. ISSN 2086-9614

[thumbnail of view/3285] Text
view/3285 - Published Version
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (7kB)

Abstract

Lithium titanate, Li4Ti5O12 (LTO) is a promising candidate as lithium ion battery anode material. In this investigation, LTO was synthesized by a solid state method using TiO2 xerogel prepared by the sol-gel method and lithium carbonate (Li2CO3). Three variations of Li2CO3 content addition in mol% or Li2CO3 molar excess were fabricated, i.e., 0, 50 and 100%, labelled as sample LTO-1, LTO-2 and LTO-3, respectively. The characterizations were made using XRD, FESEM, and BET testing. These were performed to observe the effect of lithium excess addition on structure, morphology, and surface area of the resulting samples. Results showed that the crystallite size and surface area of each sample was 50.80 nm, 17.86 m2/gr for LTO-1; 53.14 nm, 22.53 m2/gr for LTO-2; and 38.09 nm, 16.80 m2/gr for LTO-3. Furthermore, lithium excess caused the formation of impure compound Li2TiO3, while a very small amount of rutile TiO2 was found in LTO-1. A near-pure crystalline Li4Ti5O12 compound was successfully synthesized using the present method with stoichiometric composition with 0% excess, indicating very little Li+ loss during the sintering process.

Item Type: Article
Subjects: Taksonomi BATAN > Daur Bahan Bakar Nuklir dan Bahan Maju
Taksonomi BATAN > Daur Bahan Bakar Nuklir dan Bahan Maju
Taksonomi BATAN > Daur Bahan Bakar Nuklir dan Bahan Maju > Bahan Struktur dan Bahan Maju
Taksonomi BATAN > Daur Bahan Bakar Nuklir dan Bahan Maju > Bahan Struktur dan Bahan Maju
Divisions: BATAN > Pusat Sains dan Teknologi Bahan Maju
IPTEK > BATAN > Pusat Sains dan Teknologi Bahan Maju
Depositing User: Administrator Repository
Date Deposited: 22 May 2018 04:17
Last Modified: 31 May 2022 04:46
URI: https://karya.brin.go.id/id/eprint/2214

Actions (login required)

View Item
View Item