Antibody-labelled gold nanoparticles synthesized by laser ablation to detect SARS-CoV-2 antigen spike

Sulfianti, Asri and Tiara Sopandi, Vidhia and Isnaeni, Isnaeni and Suryanggono, Jodi and Pambudi, Sabar and El Muttaqien, Sjaikhurrizal and Nurdiya Ningsih, Febby and Widayanti, Tika and Mardliyati, Etik and Annisa, Annisa (2023) Antibody-labelled gold nanoparticles synthesized by laser ablation to detect SARS-CoV-2 antigen spike. ADMET and DMPK, 10 (2). pp. 92-98. ISSN 1848-7718

Full text not available from this repository. (Request a copy)

Abstract

Background and purpose: Rapid detection test via lateral flow immunoassay (LFIA) is employed as an alternate method to detect Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. Gold nanoparticles (AuNPs), a vital component of LFIA, can be synthesized by laser ablation technique. This intense laser radiation may result in monodisperse gold nanoclusters, which are impurity-free and demonstrate innovative biocompatible surface chemistry. In this current research, laser-ablated AuNPs are produced and coupled with an anti-spike SARS-CoV-2 monoclonal antibody (mAb) generated in our prior study. Experimental approach: The AuNPs from 30,000 shots of laser ablation exhibited a robust red color with a maximum absorbance peak at 520 nm. The performance of AuNPs-mAb conjugates as a signal reporter was then evaluated in half-stick LFIA. Key results: The size distribution of AuNPs shows a relatively monodisperse and unimodal distribution with average particle diameters of 44.77 nm and a surface potential of -38.5 mV. The purified anti-spike mAb SARS-CoV-2 yielded two protein bands, representing the mAb heavy chain at 55 kDa and its light chain at 25 kDa. The immobilization of anti-spike mAb onto the surface of AuNPs revealed that 25 g/ml of mAb at phosphate buffer pH 9 was required to stabilize the AuNPs. The functional test of this conjugate was performed using dipstick LFIA, and the result shows that the AuNPs-mAb conjugates could successfully detect commercial spike antigen of SARS-CoV-2 at 10 ng level. Conclusion: In this study, laser-ablated AuNPs were functionalized with anti-spike mAb SARS-CoV-2 and successfully used as a signal reporter in half-stick LFIA for detecting antigen spike SARS-CoV-2.

Item Type: Article
Uncontrolled Keywords: monoclonal antibodies, anti-SARS-CoV-2, lateral flow immunoassay, Covid-19
Subjects: Materials Sciences
Depositing User: Mrs Titi Herawati
Date Deposited: 18 Dec 2025 00:58
Last Modified: 18 Dec 2025 00:58
URI: https://karya.brin.go.id/id/eprint/56694

Actions (login required)

View Item
View Item