A-Site Doped in Perovskite La(1-x)Bax/2Srx/2Mn0.4Ti0.6O3 (x = 0, 0.1, and 0.3) for Absorbing Microwave Material

Saptari, Sitti Ahmiatri and Hapitanur, Dinda and Taryana, Yana and Sudrajat, Nanang and Rahman, Ikhwan Nur and Nanto, Dwi (2023) A-Site Doped in Perovskite La(1-x)Bax/2Srx/2Mn0.4Ti0.6O3 (x = 0, 0.1, and 0.3) for Absorbing Microwave Material. Jurnal Penelitian Fisika dan Aplikasinya (JPFA), 13 (2). pp. 106-118. ISSN 2087-9946

Full text not available from this repository. (Request a copy)

Abstract

Microwave radiation can have harmful effects on our bodies. With increased exposure due to online activities, it is essential to use absorber materials like perovskite manganate to reduce radiation. In this study, perovskite manganate La(1-x)Bax/2Srx/2Mn0.4Ti0.6O3 (x = 0, 0.1, and 0.3) was synthesized using the sol-gel method. X-ray diffraction (XRD) analysis revealed that the two samples were multi-phased, LaMnO3 and La2Ti2O7, and were formed, exhibiting a rhombohedral crystal structure (R -3 c). Morphological characterization of the sample surface using a Scanning Electron Microscope (SEM) showed that as doping increases, the grain size decreases from 282.02 to 245.63 nm at x=0 and x=0.3, respectively. This result implies that doping leads to more uniform grain distribution and enhanced grain refinement. Characterization via Vibrating Sample Magnetometer (VSM) revealed that the maximum saturation value, 0.79 emu/g, was attained when x = 0. This sample exhibits soft magnetic properties, as evidenced by its coercivity (Hc) value of < 1kOe. Results from the Vector Network Analyzer (VNA) indicate that the absorption capacity of La(1-x)Bax/2Srx/2Mn0.4Ti0.6O3 increases, with a maximum reflection loss value of -25.5 dB with 1.5 mm thickness. Consequently, La(1-x)Bax/2Srx/2Mn0.4Ti0.6O3 demonstrates potential as a microwave absorber material.

Item Type: Article
Uncontrolled Keywords: Microwave absorber, perovskite manganate, reflection loss, sol-gel method
Subjects: Materials Sciences
Depositing User: Maria Regina
Date Deposited: 09 Dec 2025 02:43
Last Modified: 09 Dec 2025 02:43
URI: https://karya.brin.go.id/id/eprint/55858

Actions (login required)

View Item
View Item