Analisis sentimen data provider layanan internet pada twitter menggunakan support vector machine dengan penambahan algoritma levenshtein distance

Ida, Bagus Nyoman Wijana Manuaba and Gede, Rasben Dantes and Gede, Indrawan (2022) Analisis sentimen data provider layanan internet pada twitter menggunakan support vector machine dengan penambahan algoritma levenshtein distance. Jurnal Sistem Komputer dan Kecerdasan Buatan (SISKOM-KB), 5 (2): 2. pp. 9-17. ISSN 2613-991X

[thumbnail of Jurnal_Ida Bagus Nyoman Wijana Manuaba_Universitas Pendidikan Ganesha_2022.pdf]
Preview
Text
Jurnal_Ida Bagus Nyoman Wijana Manuaba_Universitas Pendidikan Ganesha_2022.pdf - Published Version
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (640kB) | Preview

Abstract

Komentar pada data twitter mengandung banyak opini terkait suatu objek atau topik. Dari kumpulan komentar, dapat dilakukan analisis sentimen menggunakan Support Vector Machine untuk memperoleh hasil klasifikasi positif dan negatif. Data yang digunakan berkaitan dengan provider atau penyedia jaringan internet yang ada di Indonesia. Penambahan algoritma Levenshtein Distance pada tahap text preprocessing bertujuan untuk meningkatkan hasil klasifikasi. Tahapan Proses klasifikasi meliputi, pengumpulan data menggunakan API twitter, penghapusan duplicate data, pemberian label data, tahap text preprocessing (convert emoticon, cleansing, case folding, stemming, stopword removal, and tokenizing, penerapan algoritma Levenshtein Distance, stopword removal lanjutan, convert negation), feature extraction (TF-IDF), serta proses klasifikasi menggunakan Support Vector Machine.Hasil pengujian dengan menggunakan confusion matrix, menunjukan peningkatan hasil klasifikasi yang lebih baik setelah menggunakan algoritma Levenshtein Distance pada tahap text preprocessing. Nilai accuracy mengalami peningkatan sebesar 2%, recall positif 3%, recall negatif 1%, precision positif 1%, dan precision negatif 2%. Tetapi kecepatan waktu proses pada tahap text preprocessing dengan penambahan algoritma Levenshtein Distance lebih lambat sebesar 295,606 detik, jika dibandingkan tanpa adanya penambahan algoritma Levenshtein Distance.

Item Type: Article
Uncontrolled Keywords: Analisis sentimen, Support vector machine, Levenshtein distance, Text preprocessing, Classification
Subjects: Computers, Control & Information Theory
Depositing User: Djaenudin djae Mohamad
Date Deposited: 22 May 2023 07:40
Last Modified: 22 May 2023 07:40
URI: https://karya.brin.go.id/id/eprint/16922

Actions (login required)

View Item
View Item