This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Close this notification
Paper The following article is OPEN ACCESS

Comparison of gallium-68 production yields from (p,2n), (α,2n) and (p,n) nuclear reactions applicable for cancer diagnosis

and

Published under licence by IOP Publishing Ltd
, ,

1742-6596/1198/2/022003

Abstract

Gallium-68 (68Ga) is a positron emitter potentially applied for Positron Emission Tomography (PET) modality. In this research, different methods based on (p,2n), (α,2n) and (p,n) nuclear reactions are highlighted by theoretically calculating their potential radioactivity yields. Nuclear excitation functions calculated using the TALYS-2017 codes were employed to compute the End-of-Bombardment (EOB) yields. Among the three evaluated nuclear reactions – 69Ga(p,2n)68Ge → 68Ga, 66Zn(α,2n)68Ge → 68Ga and 68Zn(p,n)68Ga – the calculated EOB yields showed that 68Zn(p,n)68Ga nuclear reaction resulted in the highest radioactivity of up to 1445 MBq/μAh. In addition, several radioactive and non radioactive impurities such as 69Ge, 66Zn, 69Ga, 67Ge, 65Cu could be generated during 68Ga production, either by direct or indirect method. While the indirect method of 68Ga production could result in lower yield than that of the direct method, the indirect method could be more economical especially when the hospitals are too far away from the available cyclotrons. Thus, in this case, development of 68Ge/68Ga generator through indirect method of 69Ga(p,2n)68Ge → 68Ga nuclear reaction could be the best option, though very high proton dose and energy would be required to gain high radioactivity level applicable for clinical use.

Export citation and abstract BibTeX RIS

cc-by

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References

  • [1]
    Kambali I and Suryanto H 2016 J. Eng. Technol. Sci. 48 482

    CrossrefGoogle Scholar

  • [2]
    Kambali I, Suryanto H and Parwanto 2016 Australas. Phys. Eng. Sci. Med. 39 403-412

    CrossrefGoogle Scholar

  • [3]
    Kambali I, Parwanto, Suryanto H, Huda N, Listiawadi FD, Astarina H, Ismuha RR and Kardinah 2017 Physics Research International 2017 1

    CrossrefGoogle Scholar

  • [4]
    Smith D, Breeman W and Sims-Mourtad J 2013 Appl. Radiat. Isot. 76 14

    CrossrefGoogle Scholar

  • [5]
    Schultz M, Donahue P, Musgrave N, Zhernosekov K, Naidoo C, Razbash A, Tworovska I, Dick D, Watkins G, Graham M, Runde W, Clanton J and Sunderland J 2013 J. Postgrad. Med. Edu. Res. 47 26

    CrossrefGoogle Scholar

  • [6]
    Kallur K, Ramachandra P, Rajkumar K, Swamy S, Desai I, Rao R, Patil S, Sridhar P, Madhusudhan N, Krishnappa R, Bhadrasetty V, Kumara H, Santhosh S and Ajaikumar B 2017 Indian J. Nucl. Med. 32 110

    CrossrefGoogle Scholar

  • [7]
    Mojtahedi A, Thamake S, Tworowska I, Ranganathan D and Delpassand E 2014 Am. J. Nucl. Med. Mol. Imaging. 4 426

    Google Scholar

  • [8]
    Deppen S, Liu E, Blume J, Clanton J, Shi C, Jones-Jackson L, Lakhani V, Baum R, Berlin J, Smith G, Graham M, Sandler M, Delbeke D and Walker R 2016 J. Nucl. Med. 57 708

    CrossrefGoogle Scholar

  • [9]
    Sharma P, Singh H, Bal C and Kumar R 2014 Indian J. Nucl. Med. 29 2

    CrossrefGoogle Scholar

  • [10]
    Sollini M, Erba P, Fraternali A, Casali M, Di Paolo M, Froio A, Frasoldati A and Versari A 2014 Scientific World Journal 2014 1

    CrossrefGoogle Scholar

  • [11]
    Dietlein M, Kobe C, Kuhnert G, Stockter S, Fischer T, Schomäcker K, Schmidt M, Dietlein F, Zlatopolskiy BD, Krapf P, Richarz R, Neubauer S, Drzezga A and Neumaier B 2015 Mol. Imaging Biol. 17 575

    CrossrefGoogle Scholar

  • [12]
    Sanchez-Crespo A 2013 Appl. Radiat. Isot. 76 55

    CrossrefGoogle Scholar

  • [13]
    Kesch C, Kratochwil C, Mier W, Kopka K and Giesel F 2017 J. Nucl. Med. 58 687

    CrossrefGoogle Scholar

  • [14]
    Virgolini I, Decristoforo C, Haug A, Fanti S and Uprimny C 2018 Eur. J. Nucl. Med. Mol. Imaging 45 471

    CrossrefGoogle Scholar

  • [15]
    Pandey M, Byrne J, Jiang H, Packard A and DeGrado T 2014 Am. J. Nucl. Med. Mol. Imaging 4 303

    Google Scholar

  • [16]
    Alves F, Alves V, Do Carmo S, Neves A, Silva M and Abrunhosa A 2017 Modern Physics Letters A 32 1740013

    CrossrefGoogle Scholar

  • [17]
    Kambali I 2014 Atom Indonesia 40 129

    CrossrefGoogle Scholar

  • [18]
    Kambali I 2017 Makara J. Science 21 125

    CrossrefGoogle Scholar

  • [19]
    Koning A and Rochman D 2012 Nuclear Data Sheets 113 2841

    CrossrefGoogle Scholar

  • [20]
    Meinken G, Kurczak S, Mausner L, Kolsky K and Srivastava S 2005 J. Radioanal. Nucl. Chem. 263 553

    CrossrefGoogle Scholar

  • [21]
    Fassbender M, Nortier F, Philips D, Hamilton V, Heaton R, Jamriska D, Kitten J, Pitt L, Salazar L, Valdez F and Peterson E 2004 Radiochim. Acta 92 237

    CrossrefGoogle Scholar

  • [22]
    Szelecsenyi F, Boothe T, Takacs S, Tarkanyi F and Tavano E 1998 Appl. Radiat. Isot. 49 1005

    CrossrefGoogle Scholar

  • [23]
    Takacs S, Tarkanyi F and Hermanne A 2005 Nucl. Instrum. Methods Phys. Res. 240 790

    CrossrefGoogle Scholar

  • [24]
    Gladys M J, Kambali I, Karolewski MA, Soon A, Stampfl C and O’Connor DJ 2010 J. Chem. Phys. 132 024714

    CrossrefGoogle Scholar

  • [25]
    Kambali I, O’Connor DJ, Gladys MJ and Karolewski MA 2008 Appl. Surf. Sci. 254 4245

    CrossrefGoogle Scholar

Export references: BibTeX RIS