DESAIN NEUTRONIK TERAS KOMPAK RSG-GAS TANPA CIP

Jati Susilo, Iman Kuntoro

ABSTRAK

DESAIN NEUTRONIK TERAS KOMPAK RSG-GAS TANPA CIP. Peningkatan efisiensi operasi reaktor dapat dilakukan dengan cara mengubah besarnya kerapatan bahan bakar uranium dalam *meat*, pola pemuatan elemen bahan bakar dan konfigurasi material didalam teras. Dalam penelitian ini dilakukan kajian terhadap konfigurasi teras RSG-GAS dengan cara menutup CIP (*Central Irradiation Position*) dengan bahan bakar dan memindahkan 4 posisi radiasi ke daerah pinggir. Analisis karakteristik parameter neutronik dilakukan terhadap beberapa model teras RSG-GAS untuk menentukan teras yang optimal. Perhitungan sel elemen bakar dan elemen kendali dilakukan dengan paket program SRAC modul PIJ untuk mendapatkan tampang lintang makroskopis, sedangkan perhitungan teras dilakukan harga reaktivitas lebih teras tertinggi sebesar 1,06% $\Delta k/k$ dan siklus operasi reaktor tepanjang sekitar 1,19 kali lipat dengan batasan keselamatan harga faktor puncak daya dibawah 1,4 dan marjin reaktivitas padam lebih kecil dari desain awal yaitu $-2,2\% \Delta k/k$.

Kata kunci ; waktu operasi, reaktivitas, SRAC

ABSTRACT

NEUTRONIC DESIGN OF THE RSG-GAS COMPACT CORE WITHOUT CIP. Improvement of the efficiency of reactor operation can be achieved by some ways, such as, the uranium density of the fuel, loading pattern and configuration of core elements. The paper deals with determination of optimal configuration of the compact core with out CIP. Calculations were carried out by means of SRAC-PIJ module for cross section generation and SRAC-ASMBURN for core calculations. The optimal compact core obtained, showed that no-CIP compact core increase higest reactivity value about 1,06 % $\Delta k/k$ and longest time operation about 1,19 time in the safety criteria that is power peaking factor less then 1,4 and margin control element worth less then value in the first design that $-2,2\%\Delta k/k$.

Key Words : opera tion time, reactivity, SRAC

PENDAHULUAN

Susunan teras RSG-GAS meliputi bahan bakar Uranium dengan pengkayaan rendah (19.75%²³⁵U), moderator dan pendingin berupa air ringan (H₂O), dan Be+H₂O sebagai reflektor. Elemen bakar dan elemen kendali di teras aktif masing-masing terdiri dari 40 buah dan 8 buah. Selain itu di dalam teras juga terdapat 8 buah fasilitas iradiasi yang terdiri dari 4 buah Irradiation Position (IP) yang berada diantara elemen bakar dan 4 buah Central Irradiation Potition (CIP) yang terletak ditengah-tengah teras. Sejak dioperasikannya teras RSG-GAS, sampai saat ini telah dilakukan perubahan-perubahan antara lain penggantian jenis bahan bakar dari bahan bakar oksida (U₃O₈-Al) menjadi bahan bakar silisida (U₃Si₂-Al), dan juga perubahan cara pemuatan elemen bakar / elemen kendali yang semula menggunakan pola 6/2 dan 6/1 menjadi

pola 5/1 saja. Penggantian pola pemuatan dilakukan dengan tujuan selain untuk efifiensi juga untuk mempermudah pemuatan elemen bakar / elemen kendali.^[1]

Selain faktor besarnya kerapatan bahan bakar uranium dalam *meat* dan pola pemuatan elemen bakar / elemen kendali ke dalam teras, faktor lain yang mempengaruhi agar teras RSG-GAS dapat beroperasi secara optimal adalah faktor konfigurasi dan komposisi material didalam teras. Selama ini fasilitas iradiasi IP dan CIP belum dimanfaatkan secara optimal^[2]. Dari hasil penelitian yang dilakukan oleh peneliti sebelumnya, penutupan 2 pasang CIP dan 2 pasang IP pada teras setimbang RSG-GAS, akan menaikkan siklus operasi dari 22 hari menjadi 26 hari atau mengalami kenaikan sekitar 4 hari atau 18%.^[3].

Dalam penelitian ini dilakukan kajian terhadap konfigurasi teras RSG-GAS dengan cara menutup CIP dengan bahan bakar dan memindahkan 4 posisi radiasi tersebut ke daerah pinggir. Adanya perubahan konfigurasi teras akan mengakibatkan perubahan-perubahan karakterisitik parameter neutronik teras seperti panjang siklus operasi, harga reaktivitas lebih dan harga faktor puncak daya. Untuk itu perlu dilakukan perhitungan parameter neutronik teras kompak RSG-GAS tersebut. Perhitungan sel elemen bakar dan elemen kendali dilakukan dengan paket program SRAC modul PIJ untuk mendapatkan tampang lintang makroskopis, sedangkan perhitungan teras dilakukan dengan SRAC-ASMBURN. Analisis parameter neutronik teras dilakukan terhadap beberapa model teras RSG-GAS untuk mendapatkan teras RSG-GAS yang optimal dalam batasan keselamatan yaitu harga faktor puncak daya dibawah 1,4 dan marjin reaktivitas padam lebih kecil dari desain awal (- $2,2\% \Box k/k$).

TEORI DAN METODOLOGI SRAC (Standard Reactor Analysis Code)

SRAC adalah program komputer yang dikembangkan oleh JAERI. Didalam SRAC terdapat 5 modul perhitungan sel antara lain adalah PIJ yaitu perhitungan pembakaran sel berdasarkan metode probabilitas tumbukan neutron, ANISN yaitu perhitungan transport neutron satu dimensi, TWOTRAN yaitu perhitungan transport neutron dua dimensi, TUD yaitu perhitungan difusi neutron satu dimensi, dan CITATION yaitu perhitungan difusi neutron multi dimensi, serta dua paket program lainnya yaitu ASMBURN dan COREBN.

Di dalam perhitungan pembakaran kisi sel dengan menggunakan SRAC modul PIJ, perubahan nuklida i dengan densitas atom N_i ditunjukkan oleh persamaan (1) berikut ini.

dengan :

- γ_{ji} = jumlah produksi nuklida **i** karena reaksi fisi nuklida **j**,
- $\sigma_{a,i}^{g}$ = tampang lintang serapan nuklida **i** untuk kelompok energi **g**,
- $\sigma_{f,j}^{g}$ = tampang lintang fisi nuklida **j** untuk kelompok energi **g**,
- $\sigma_{c,i-1}^{g}$ = tampang lintang tangkapan neutron nuklida **i-1** untuk kelompok energi **g**

Dengan asumsi bahwa daya linier total (MW/cm) Qi, dan distribusi daya Pi(r) tetap untuk masingmasing interval waktu pembakaran $t_{i-1} \le t < t_i$ (i=1,2,3....N). Sedangkan tampang lintang makroskopis untuk ASMBURN ditunjukkan dalam persamaan (2) di bawah ini.

$$\Sigma_{x,g}(r,t_{i-1}) = \Sigma_x - TABLE_m \{E(r,t_{i-1})\} \dots (2)$$

dengan,

$$\begin{array}{ll} \mathbf{x} & = \text{jenis tampang lintang,} \\ \boldsymbol{\Sigma}_x - TABLE_m = & \text{tabel tampang lintang makroskopis bahan bakar m pada daerah } \\ \mathbf{r}, \\ \mathbf{E}(\mathbf{r}, \mathbf{t}_{i-1}) & = & \text{fraksi bakar (MWd/t) pada daerah } \\ \mathbf{r} & \text{waktu pembakaran } \mathbf{t}_{i-1} \\ \text{Selanjutnya} & & \text{perhitungan densitas atom k} \end{array}$$

Selanjutnya perhitungan densitas atom k ditunjukkan dengan persamaan (3) di bawah.

$$N_k(r, t_{i-1}) = N - TABLE_m \{E(r, t_{i-1})\}$$
.....(3)

dengan $N_k(\mathbf{r}, \mathbf{t}_{i-1}) = \text{densitas atom } k (*10^{24}/\text{cm}^3) \text{ pada}$ daerah r waktu pembakaran \mathbf{t}_{i-1}

$$N$$
 - TABLE_m = tabel komposisi nuklida didalam bahan bakar m pada daerah r,

Setelah itu dilakukan perhitungan distribusi fluks neutron $\varphi_g(r,t_{i-1})$ dengan metode probabilitas tumbukan neutron seperti ditunjukkan pada persamaan (4) di bawah.

$$Fnorm = \frac{Q_i}{\sum\limits_{r \in g} \gamma(r, t_{i-1}) \sum_{f,g} (r, t_{i-1}) \varphi_g(r, t_{i-1}) V(r)}$$

dengan

 γ (r,t_{i-1}) = energi panas yang dikeluarkan dalam 1 kali terjadi pembelahan (MJ/fission)

Distribusi daya $P(r,t_i)$, penambahan fraksi bakar ΔE dan fraksi bakar langkah ke-i $E(r,t_i)$ ditunjukkan dalam persamaan (7), (8) dan (9) di bawah ini.

$$P(r,t_{i}) = \gamma(r) \sum_{g} \sum_{f,g} (r,t_{i-1}) \Phi_{g}(r,t_{i-1}) V(r) \dots (7)$$

$$\Delta E(r,t_{i}) = P(r,t_{i}) (t_{i} - t_{i-1}) / INV(r) \dots (8)$$

$$E(r,t_{i}) = E(r_{i},t_{i-1}) + \Delta E(r,t_{i}) \dots (9)$$

Langkah Perhitungan

Dalam penelitian ini dilakukan perhitungan beberapa kemungkinan konfigurasi teras baru RSG-GAS dengan SRAC-ASMBURN. Pemodelan konfigurasi teras baru RSG-GAS dilakukan dengan mengubah komposisi dan susunan material baik material elemen bakar maupun material lain di dalam teras. Beberapa model teras RSG-GAS tersebut antara lain ;

1. Teras A yaitu teras RSG-GAS saat ini tanpa ada perubahan, seperti terlihat pada Gambar 1.

Distribusi fluks neutron $\varphi_g(r,t_{i-1})$ dinormalisasi pada tiap-tiap langkah pembakaran pada daya total Q_i (MW) menjadi $\Phi(r,t_{i-1})$ di bawah ini.

2. Teras B yaitu teras A dengan perubahan posisi CIP di pindahkan ke bagian luar diganti dengan bahan bakar dimana fasilitas iradiasi tersebut diletakkan. Yaitu bahan bakar pada posisi H-9 dipindahkan ke posisi E-7, bahan bakar pada posisi A-9 ke D-7, bahan bakar pada posisi H-4 ke E-6 dan bahan bakar pada posisi A-4 ke posisi D-6, seperti terlihat pada Gambar 2.

- 3. Teras C yaitu teras yang mempunyai komposisi sama dengan teras B diikuti perubahan letak elemen-elemen bakar sedangkan material lainnya tetap, seperti terlihat pada Gambar 3.
- 4. Teras D yaitu teras C dengan perubahan komposisi material di dalam teras, sedangkan susunan elemen bakar tetap. Penggantian material tersebut adalah air ringan (H₂O) yang berada diposisi H-9, A-9, H-4 dan A-4 diganti dengan Beryllium, seperti terlihat pada Gambar 4.
- 5. Teras E yaitu teras dengan komposisi sama dengan teras D dengan perubahan susunan letak elemen bakar maupun elemen kendali, seperti terlihat pada Gambar 5.

н	Be	H2O	FE 2.2	FE 5.3	FE 4.5	FE 5.2	H2O	Be
G	B≎	FE 3.4	FE 8.4	H2O	CE 7	FE 7.4	FE 6.5	Be
F	FE 2.4	FE 2.5	CE 3	FE 6.3	FE 8.3	CE 2	FE 7.3	FE 1.3
E	FE 3.1	CE 6	FE 4.4	FE 1.4	FE 1.5	FE 6.2	H2O	FE 3.3
D	FE 5.5	H2O	FE 8.1	FE 1.1	FE 2.1	FE 4.2	CE 5	FE 5.4
С	FE 2.3	FE 7.1	CE 1	FE 7.5	FE 6.4	CE 4	FE 3.2	FE 1.2
В	Be	FE 6.1	FE 8.5	CE 8	H2O	FE 8.2	FE 4.1	Be
A	6	H2O	FE 7.2	FE 4.3	FE 5.1	FE 3.5	H2O	Be
	10	9	8	7	6	5	4	3

Gambar 1. Konfigurasi Teras A

Gambar 3. Konfigurasi Teras C

Gambar 2. Konfigurasi Teras B

н	Be	Be	FE 3.4	FE 4.4	FE 4.5	FE 3.5	Be	Ве
G	Be	FE 2.4	FE 6.5	H2O	CE 7	FE 5.5	FE 2.5	Be
F	FE 1.5	FE 3.3	CE 3	FE 8.5	FE 7.4	CE 2	FE 7.5	FE 2.3
E	FE 3.2	CE 6	FE 6.4	FE 8.3	FE 8.4	FE 7.3	H2O	FE 5.4
D	FE 5.3	H2O	FE 7.2	FE 8.1	FE 8.2	FE 6.3	CE 5	FE 4.3
С	FE 1.3	FE 6.1	CE 1	FE 6.2.	FE 7.1	CE 4	FE 4.2	FE 1.4
В	Be	FE 2.1	FE 4.1	CE 8	H2O	FE 5.2	FE 2.2	Be
A	Be	Be	FE 1.1	FE 3.1	FE 5.1	FE 1.2	Be	Be
	10	9	8	7	6	5	4	3

Gambar 4. Konfigurasi Teras D

Н	Be	Be	FE 35	FE 65	FE 25	FE 45	Be	Be
G	Be	FE 54	H2O	FE 74	FE 75	CE 3	FE 55	Be
F	FE 24	CE 2	FE 63	FE 85	CE 6	FE 64	H2O	FE 34
Е	FE 15	FE 44	CE 5	FE 83	FE 84	FE 73	FE 53	FE 23
D	FE 13	FE 52	FE 72	FE 81	FE 82	CE 7	FE 43	FE 14
С	FE 33	H2O	FE 61	CE 8	FE 71	FE 62	CE 4	FE 22
В	₿Sŧ	FE 41	CE 1	FE 32	FE 51	H2O	FE 42	Ве
A	Be	Be	FE 21	FE 11	FE 12	FE 31	Be	Be
	10	9	8	7	6	5	4	3

Gambar 5. Konfigurasi Teras E

Teras-teras tersebut diasumsikan beroperasi pada daya yang sama yaitu 30 MW. Perhitungan sel elemen bakar dan elemen kendali dilakukan dengan SRAC modul PIJ untuk mendapatkan tampang lintang makroskopis, sedangkan perhitungan teras dilakukan dengan SRAC-ASMBURN.^[5] Perhitungan teras dilakukan untuk mendapatkan panjang siklus operasi, harga faktor perlipatan effektif, distribusi fluks neutron dan faktor puncak daya.

HASIL PERHITUNGAN DAN PEMBAHASAN

Harga Reaktivitas Dan Panjang Waktu Operasi Teras

Tabel 1 menunjukkan hasil perhitungan besarnya perubahan harga reaktivitas dan panjang siklus operasi untuk berbagai model teras RSG-GAS. Dari tabel tersebut dapat diketahui bahwa dengan adanya perubahan komposisi dan susunan material di dalam teras akan mengakibatkan perubahan faktor perlipatan effektif, reaktivitas dan panjang waktu operasi. Perubahan penempatan bahan bakar segar dari pinggir ke tengah teras (dari teras A ke teras B) mengakibatkan bertambah besarnya nilai reaktivitas lebih teras dan menaikkan lamanya waktu operasi. Hal tersebut karena kemampuan bahan bakar segar untuk bereaksi fisi yang lebih besar dari pada bahan bakar lama, dan juga karena letaknya yang ditengah mendukung kemungkinan teras berinteraksi dengan neutron yang lebih banyak. Sebaliknya perubahan penempatan bahan bakar segar dari tengah ke pinggir dan bahan bakar berkelas fraksi bakar tinggi ke tengah teras mengakibatkan semakin menurunnya harga reaktivitas lebih teras dan lamanya waktu operasi teras, seperti perubahan yang ditunjukkan dari teras B menjadi teras C.

	Unit	SAR ⁶⁾	Teras A	Teras B	Teras C	Teras D	Teras E
$\rho = (k_{eff} - 1)/k_{eff}$	%	9,2	5,80	6,76	6,15	6,65	6,39
$\Delta \rho (=\rho - \rho_A)$	%	-	-	0,96	0,35	0,84	0,59
Reaktivitas Padam	%	-5,3	-8,46	-7,48	-8,72	-7,80	-7,75
Marjin Reaktivitas Padam	%	-2,2	-5,18	-3,91	-5,40	-4,53	-4,51
Panjang Siklus Operasi	Hari	25	21,37	25,25	23,73	25,48	25,49
Kenaikan Siklus Operasi	Hari	-	-	3,88	2,36	4,11	4,12
	(%)	-	-	(18,16)	(11,04)	(19,23)	(19,28)

Tabel 1. Perubahan Harga Reaktivitas dan Panjang Siklus Operasi Untuk Berbagai Teras

Perubahan teras C menjadi teras D yaitu perubahan material air menjadi Berrylium di empat tempat memberikan pengaruh terhadap semakin besarnya harga reaktivitas dan semakin lamanya waktu operasi teras. Hal tersebut disebabkan karena teras RSG-GAS yang bersifat over moderated mengalami penurunan jumlah air yang juga merupakan bahan penyerap neutron. Perubahan material air (Sa=0,0222) menjadi Beryllium (Σa=0,001174) mengakibatkan perubahan semakin berkurangnya tampang lintang makroskopik serapan neutron termal. Perubahan teras D menjadi teras E yaitu perubahan susunan letak baik elemen bakar maupun elemen kendali di dalam teras dengan komposisi material yang sama. Perubahan tersebut juga memberikan pengaruh terhadap reaktivitas dan siklus operasi teras.

Perubahan komposisi maupun konfigurasi material dari teras A hingga E, juga menyebabkan adanya perubahan harga reaktivitas padam dan marjin reaktivitas padam. Seluruh teras tersebut mempunyai nilai marjin reaktivitas padam yang lebih kecil dari nilai desain awal yaitu $-2,2 \% \Delta k/k$, sehingga seluruh teras dapat dikatakan memenuhi kriteria keselamatan untuk dioperasikan.

Distribusi Faktor Daya

Hasil perhitungan distribusi faktor daya untuk masing-masing model teras RSG-GAS ditunjukkan dalam gambar 6-10. Dari Gambar 6. diketahui bahwa harga faktor puncak daya teras A saat BOC/EOC adalah sebesar 1,291/1,289 diposisi C-8, sedangkan faktor daya terendah sebesar 0,635/0,649 diposisi A-8. Dari Gambar 7. diketahui bahwa harga faktor puncak daya teras B saat BOC/EOC adalah sebesar 1,521/1,502 diposisi E-6, sedangkan faktor daya terendah sebesar 0,622/0,635 diposisi A-8. Pada teras B tersebut harga faktor puncak daya melebihi batas harga keselamatan yaitu 1,4, sehingga tidak layak untuk dioperasikan. Tingginya harga faktor puncak daya tersebut disebabkan karena bahan bakar segar diletakkan di tengah-tengah teras, sehingga kemungkinan terjadinya reaksi fisi lebih banyak dibandingkan bila diletakkan dipinggir.

Kemudian dari Gambar 8. diketahui bahwa harga faktor puncak daya teras C saat BOC/EOC adalah sebesar 1,342/1,339 diposisi C-8 sedang terendah sebesar 0,813/0,8033 diposisi B-7. Dari hasil tersebut dapat diketahui bahwa teras yang mempunyai komposisi tetap dengan perubahan susunan elemen bakar di dalam teras (dari teras B menjadi teras C) memberikan pengaruh terhadap semakin berkurangnya faktor puncak daya dan semakin besarnya faktor daya terendah.

Dari Gambar 9. diketahui bahwa harga faktor puncak daya teras D saat BOC/EOC adalah sebesar 1,369/1,369 diposisi C-8 sedang terendah sebesar 0,789/0,776 diposisi B-7. Dengan susunan

н	Be	1.0884 FE 1.4	1.0881 FE 2.2	1.0456 FE 5.3	1.0249 FE 4.5	0.9004 FE 5.2	1.1347 FE 1.5	Be
G	Be	1.0303 1.0294 FE 3.4 1.0373	0.8754 FE 8.4 0.8653	P	0.9804 CE 7 0.9643	0.8588 FE 7.4 0.8576	0.9097 FE 6.5 0.9103	Be
F	0.9366 FE 2.4 0.9527	1.0771 FE 2.5 1.0885	1.1693 CE 3 1.1692	1.2167 FE 6.2 1.1846	1.0010 FE 8.3 0.9779	1.2653 CE 2 1.2656	0.9214 FE 7.3 0.9120	1.1750 FE 1.3 1.1715
Е	0.8945 FE 3.1 0.9121	0.9166 CE 6 0.9157	1.2830 FE 4.4 1.2684			1.2355 FE 6.3 1.2063	þ	1.1402 FE 3.3 1.1374
D	0.8641 FE 5.5 0.8739	P	1.1160 FE 8.1 1.0890	C.	P.	1.2817 FE 4.2 1.2648	1.0217 CE 5 1.0170	0.9190 FE 5.4 0.9214
С	0.9193 FE 2.3 0.9381	0.8928 FE 7.1 0.8959	1.2905 CE 1 1.2893	1.0728 FE 7.5 1.0550	1.1762 FE 6.4 1.1531	1.0889 CE 4 1.0878	1.0440 FE 3.2 1.0514	1.1216 FE 1.2 1.1226
В	Be	0.8175 FE 6.1 0.8307	0.7591 FE 8.5 0.7660	0.8546 CE 8 0.8459	IP	0.8088 FE 8.2 0.8080	0.9485 FE 4.1 0.9607	Be
A	Be	0.9243 FE 1.1 0.9388	0.6354 FE 7.2 0.6487	0.8414 FE 4.3 0.8579	0.8761 FE 5.1 0.8881	0.8468 FE 3.5 0.8667	0.8942 FE 2.1 0.9138	Be
	10	9	8	7	6	5	4	3

Gambar 6. Distribusi faktor daya Teras A

Н	ße	H2O	1.1432 FE 2.2 1.1569	0.9917 FE 5.3 0.9930	0.9647 FE 4.5 0.9741	0.9135 FE 5.2 0.9175	H2O	Be
G	Be	1.0603 FE 3.4 1.0712	0.7994 FE 8.4 0.7875	ŀP	0.9148 CE 7 0.8936	0.8057 FE 7.4 0.8039	0.8977 FE 6.5 0.8973	Be
F	0.8882 FE 2.4 0.9108	1.0790 FE 2.5 1.0963	1.1995 CE 3 1.1979	1.1135 FE 6.2 1.0848	0.8931 FE 8.3 0.8734	1.3223 CE 2 1.3229	0.8876 FE 7.3 0.8780	1.1507 FE 1.3 1.1591
Е	0.8263 FE 3.1 0.8463	0.8807 CE 6 0.8759	1.1851 FE 4.4 1.1756	1.4988 FE 1.4 1.4806	1.5209 FE 1.5 1.5022	1.1468 FE 6.3 1.1209	P	1.1140 FE 3.3 1.1183
D	0.8103 FE 5.5 0.8208	IP	0.9367 FE 8.1 0.9104	1.5016 FE 1.1 1.4854	1.3746 FE 2.1 1.3652	1.2064 FE 4.2 1.1979	0.9965 CE 5 0.9907	0.8513 FE 5.4 0.8583
С	0.8941 FE 2.3 0.9189	0.8090 FE 7.1 0.8083	1.3755 CE 1 1.3761	0.9481 FE 7.5 0.9337	1.0616 FE 6.4 1.0422	1.0970 CE 4 1.0934	1.0500 FE 3.2 1.0631	1.0922 FE 1.2 1.1046
В	Be	0.7799 FE 6.1 0.7901	0.7037 FE 8.5 0.7091	0.7773 CE 8 0.7681	IΡ	0.7515 FE 8.2 0.7481	0.9051 FE 4.1 0.9168	Be
A	Be	H2O	0.6220 FE 7.2 0.6349	0.8122 FE 4.3 0.8328	0.7794 FE 5.1 0.7920	0.8423 FE 3.5 0.8628	H2O	Be
	10	9	8	7	6	5	4	3

Gambar 7. Distribusi faktor daya Teras B

н	Be	H2O	1.0775 FE 3.4 1.0841	1.0409 FE 4.4 1.0425	0.9760 FE 4.5 0.9843	1.0254 FE 3.5 1.0355	H2O	Be
G	Ве	1.1355 FE 2.4 1.1447	0.9923 FE 6.5 0.9855	P	0.9277 CE 7 0.9103	0.9582 FE 5.5 0.9634	1.1163 FE 2.5 1.1281	Be
F	0.9703 FE 1.5 0.9808	1.0339 FE 3.3 1.0439	1.1805 CE 3 1.1799	0.9657 FE 8.5 0.9446	0.9560 FE 7.4 0.9445	1.2767 CE 2 1.2799	0.8923 FE 7.5 0.8863	1.0675 FE 2.3 1.0811
Е	0.8761 FE 3.2 0.8904	0.8909 CE 6 0.8798	1.0240 FE 6.4 1.0146	0.9350 FE 8.3 0.9195	0.9130 FE 8.4 0.8973	1.0596 FE 7.3 1.0389	IP	0.9617 FE 5.4 0.9610
D	0.8581 FE 5.3 0.8632	P	1.0460 FE 7.2 1.0264	0.9506 FE 8.1 0.9362	0.9336 FE 8.2 0.9191	1.0630 FE 6.3 1.0554	0.9969 CE 5 0.9926	0.9461 FE 4.3 0.9550
С	0.9958 FE 1.3 1.0057	0.9371 FE 6.1 0.9340	1.3416 CE 1 1.3392	1.0514 FE 6.2. 1.0441	1.0426 FE 7.1 1.0269	1.0883 CE 4 1.0858	0.9954 FE 4.2 1.0034	1.0850 FE 1.4 1.0920
В	Be	1.0836 FE 2.1 1.0951	0.9829 FE 4.1 0.9921	0.8125 CE 8 0.8033	P	0.9856 FE 5.2 0.9865	1.0421 FE 2.2 1.0557	Be
A	Be	H2O	0.9931 FE 1.1 1.0031	0.8771 FE 3.1 0.8926	0.8377 FE 5.1 0.8457	0.9617 FE 1.2 0.9729	H2O	Be
	10	9	8	7	6	5	4	3

Gambar 8. Distribusi faktor daya Teras C

Н	Ве	Be	1.0431 FE 3.4 1.0534	1.0503 FE 4.4 1.0513	0.9864 FE 4.5 0.9948	1.0284 FE 3.5 1.0400	Be	Be
G	Be	1.1088 FE 2.4 1.1222	0.9730 FE 6.5 0.9649	IP	0.9032 CE 7 0.8831	0.9632 FE 5.5 0.9676	1.1310 FE 2.5 1.1447	Ве
F	1.0058 FE 1.5 1.0189	1.0409 FE 3.3 1.0530	1.1825 CE 3 1.1826	0.9242 FE 8.5 0.9017	0.9305 FE 7.4 0.9179	1.2922 CE 2 1.2961	0.8757 FE 7.5 0.8675	1.0986 FE 2.3 1.1130
Е	0.8911 FE 3.2 0.9080	0.8783 CE 6 0.8732	1.0064 FE 6.4 0.9976	0.8887 FE 8.3 0.8727	0.8756 FE 8.4 0.8587	1.0235 FE 7.3 1.0005	P	0.9662 FE 5.4 0.9642
D	0.8604 FE 5.3 0.8653	٩ſ	1.0014 FE 7.2 0.9800	0.9054 FE 8.1 0.8901	0.8813 FE 8.2 0.8654	1.0397 FE 6.3 1.0309	0.9855 CE 5 0.9807	0.9550 FE 4.3 0.9639
С	1.0353 FE 1.3 1.0473	0.9290 FE 6.1 0.9246	1.3694 CE 1 1.3689	1.0212 FE 6.2 1.0123	1.0174 FE 7.1 0.9986	1.0936 CE 4 1.0896	1.0135 FE 4.2 1.0209	1.1290 FE 1.4 1.1371
В	Be	1.1025 FE 2.1 1.1164	1.0004 FE 4.1 1.0096	0.7891 CE 8 0.7764	P	1.0142 FE 5.2 1.0110	1.1107 FE 2.2 1.1240	Be
A	Be	ße	1.0168 FE 1.1 1.0300	0.9083 FE 3.1 0.9245	0.8648 FE 5.1 0.8706	1.0425 FE 1.2 1.0548	Be	Be
	10	9	8	7	6	5	4	3

Gambar 9. Distribusi faktor daya Teras D

			1 1 4 6 0	0 0 0 0 0 0	1 0010	0.0064		
н	Bo	Ro	1.1400 FE 3.5	0.0290 FE 6 5	FE 2.5	0.9004 FE / 5	Ro	Re
••			1.1483	0.8338	1.1087	0.9928		
		4 0 4 7 7		0.0057	0.0000	0.0020	4 0005	
C	De	1.0477	ю	0.8957	0.8380	1.1363	1.0395	Da
G	De.	1 0394	U T	FE 7.4 0.8850	0.8368	1.1430	1 0322	De
		1.0004		0.0000	0.0000		1.0022	
_	0.9696	1.1761	1.0223	0.8500	0.9673	1.0459		1.1404
F		CE 2 1 1886	FE 0.3	FE 8.5	CE 6 0.9581	1 0202	IP	FE 3.4
	0.9003	1.1000	1.0100	0.0402	0.0001	1.0302		1.1412
_	0.9735	1.0030	1.0285	0.8486	0.8468	0.9127	1.0609	1.0838
E	FE 1.5	FE 4.4	CE 5	FE 8.3	FE 8.4	FE 7.3	FE 5.3	FE 2.3
	0.9872	1.0104	1.0230	0.8361	0.8332	0.9029	1.0549	1.0980
	0.9941	0.9981	0.8923	0.8569	0.8484	0.8717	1.0623	1.1225
D	FE 1.3	FE 5.2	FE 7.2	FE 8.1	FE 8.2	CE 7	FE 4.3	FE 1.4
	1.0073	0.9954	0.8841	0.8442	0.8355	0.8607	1.0671	1.1317
	1.0210		1.0453	0.7929	0.9072	1.0190	1.0476	1.0951
С	FE 3.3	IP	FE 6.1	CE 8	FE 7.1	FE 6.2	CE 4	FE 2.2
	1.0279		1.0324	0.7858	0.8999	1.0063	1.0505	1.1076
		1.1042	1 2669	1.0642	1.0159		1.1225	
В	BS+	FE 4.1	CE 1	FE 3.2	FE 5.1	IP	FE 4.2	Be
		1.1011	1.2735	1.0745	1.0129		1.1174	
			1 0038	0 9741	0 9964	1 0284		
۸	Be	Be	FE 2.1	FE 1.1	FE 1.2	FE 3.1	Be	Be
А			1.0197	0.9873	1.0093	1.0355		
	4.0	0		7	0	-	4	
	10	9	ð	1	ю	5	4	3

Gambar 10. Distribusi faktor daya Teras E

elemen bakar yang sama, perubahan material air menjadi Beryllium di empat tempat didalam teras (dari teras C ke teras D) tidak memberikan pengaruh yang signifikan terhadap perubahan besarnya faktor puncak daya dan faktor daya terendah. Dari Gambar 10. diketahui bahwa harga faktor puncak daya teras E saat BOC/EOC adalah sebesar 1,267/1,274 diposisi B-8 sedangkan harga terendah sebesar 0,793/0,786 diposisi C-7. Perubahan komposisi dan susunan teras dari teras A menjadi teras B, C, D dan E menunjukkan bahwa harga faktor puncak daya yang paling kecil terjadi pada teras E dan hanya teras B yang tidak memenuhi batas keselamatan.

Distribusi Fluks Termal

Hasil perhitungan distribusi fluks termal di baris C dan D untuk teras A~E ditunjukkan pada Gambar 11. dan Gambar 12. Pada Gambar 11. dapat diketahui bahwa teras A, B, C, dan D mempunyai bentuk fluks termal yang hampir sama. Hal tersebut disebabkan karena pada baris C teras-teras tersebut diposisi yang sama terdapat material yang sama, yaitu elemen bakar dan elemen kendali. Dibandingkan dengan harga fluks termal di teras A, maka teras B, C dan D memiliki rata-rata fluks termal yang sedikit lebih tinggi yaitu kenaikan masing-masing sebesar 3,44%, 1,39% dan 4,37%. Untuk teras E terdapat perbedaan bentuk fluks neutron, karena di posiss C-9 terdapat IP yang merupakan air ringan. Karena air ringan mempunyai sifat sebagai moderator, maka jumlah neutron cepat yang mengalami penurunan energi menjadi neutron termal menjadi besar. Pada Gambar 12. dapat diketahui bahwa untuk teras A~E pada baris D terdapat tiga bentuk fluks termal. Bentuk pertama yaitu distribusi fluks termal dengan dua puncak, seperti terjadi pada teras A. Kedua puncak tersebut masing-masing merupakan posisi IP (puncak pertama) dan CIP (puncak kedua) berada, dimana air ringan sebagai material penyusunnya. Bentuk kedua yaitu distribusi fluks termal dengan satu puncak saja seperti pada teras B, C dan D. Puncak tersebut berada di posisi D-9 dimana IP berada. Pada terasteras tersebut karena posisi CIP telah digantikan dengan bahan bakar maka fluks di tempat tersebut menjadi lebih rendah dibandingkan dengan teras A. Bentuk ketiga yaitu distribusi fluks termal dengan tanpa puncak seperti pada teras E. Untuk teras E, pada baris D hanya terdapat material elemen bakar dan elemen batang kendali, seperti pada baris C teras lainnya, sehingga bentuknya pun hampir sama. Harga fluks di IP pada posisi D-9 (untuk teras B,C dan D) dan IP pada posisi C-9 untuk teras E mengalami kenaikan dari 1,755E+14 n/cm2det menjadi masing-masing 1,875E+14 n/cm2det, 1,858E+14 n/cm2det, 1,881E+14 n/cm2det dan 1,813E+14 n/cm2det.

Gambar 11. Distribusi fluks termal pada baris C

Gambar 12. Distribusi fluks termal pada baris D

KESIMPULAN

Dari pembahasan diatas dapat disimpulkan bahwa perubahan susunan dan komposisi material teras RSG-GAS berpengaruh terhadap besarnya reaktivitas lebih, panjang siklus dan harga faktor puncak daya. Semua teras diatas (A~E) mempunyai harga marjin reaktivitas padam yang lebih kecil dari harga desain awal yaitu sebesar – 2,2 % □ k/k. Penutupan CIP dengan bahan bakar menaikkan lamanya siklus operasi sekitar 1,18 kali lipat. Penutupan CIP dan diikuti dengan pengaturan kembali distribusi *burn-up* yaitu untuk posisi ditengah-tengah teras jangan diletakkan bahan bakar baru karena akan menurunkan faktor puncak daya dari 1,521 menjadi 1,342. Untuk perubahan komposisi dari material air diganti dengan Berrylium di empat posisi dalam teras menaikkan waktu operasi teras sekitar 1,07 kali lipat. Perubahan posisi elemen kendali perlu dipertimbangkan dalam menentukan teras kompak karena dapat menurunkan faktor puncak daya dari 1,369 menjadi 1,267. Dari berbagai model teras A, B, C, D dan E tersebut diatas, teras E mempunyai panjang siklus operasi paling lama dengan batasan keselamatan harga faktor puncak daya lebih kecil dari 1,4.

• DAFTAR PUSTAKA

- 1. LIEM PENG HONG, BAKRI ARBIE, T. M. SEMBIRING, "Fuel Management Strategy for The new Equilibrium Siliside core Design of RSG GAS ", Nuclear Engineering and Design, Belgium 1997
- JATI SUSILO, LILY SUPARLINA," Analisis Perhitungan Reaktivitas Pemuatan Berbagai Target Iradiasi", Seminar Ke-6 Teknologi & Keselamatan PLTN Serta Fasilitas Nuklir, Jakarta, Oktober 2000
- TAGOR M.S., LIEM P.H., TUKIRAN S., "Fuel Management Strategy For The Compact Core Design Of RSG-GAS (MPR-30)", The 4Th International Topical Meeting on Research Reactor Fuel Management, March 19-21, 200, Colmar, France
- 4. J. J. DUDERSTADT, L. J. HAMILTON, "Nuclear Reactor Analysis", John Wiley & Sons, 1976
- 5. JAERI-Data/Code96-015, "SRAC95; General Purpose Neutronics CodeSystem", Japan Atomic Energy Research Institute, February 1996 (in Japanese)
- 6. BATAN, "Multi Purpose Research Reactor G.A SIWABESSY Safety Analysis Report", , Vol. 1, September 1989