Biomaterials and Medical Devices pp 1-22 | Cite as
Structure and Properties of Biomaterials
Abstract
Biomaterials are materials from which medical devices are made. Based on their chemical composition, they can be polymers, metals, ceramics or composites. Metals are still the most used biomaterials mostly due to their superior mechanical properties and can be found in orthopedic, cardiovascular and dental implants. However, many type of implants can only work properly when polymers or ceramics are also used in pair with metals such as in total knee or hip arthroplasties. Nowadays, biomaterials are no longer seen as inert substances supporting or replacing dysfunctional tissues or organs. They are now required to promote the healing process and self-disintegrate once the process is completed. All the efforts in searching ideal biomaterials are paid to improve the wellness and health of human beings. This chapter is intended to give a brief introduction to the structure and property of biomaterials.
Keywords
Biomaterials Ceramic Metal Polymer Property StructureNotes
Acknowledgment
We acknowledge the financial supports from Indonesian Ministry of Research, Technology and Higher Education (SGS), CHU de Québec Research Center (HH), and Natural Science and Engineering Research Council (AP).
References
- Balla, V. K., Bodhak, S., Bose, S., & Bandyopadhyay, A. (2010). Porous tantalum structures for bone implants: Fabrication, mechanical and in vitro biological properties. Acta Biomaterialia, 6, 3349–3359.CrossRefGoogle Scholar
- Brach del Prever, E. M., BISTOLFI, A., BRACCO, P. & COSTA, L. (2009). UHMWPE for arthroplasty: Past or future? Journal of Orthopaedics and Traumatology, 10, 1–8.Google Scholar
- Brandes, E. A., & Brook, G. B. (1992). Smithells Metals Reference Book (7th ed.). Oxford: Butterworth-Heinemann.Google Scholar
- Burke, A. & Hasirci, N. (2004). Polyurethanes in biomedical applications. In N. Hasirci, & V. Hasirci (Eds.), Biomaterials. Heidelberg: Springer.Google Scholar
- Calin, M., Helth, A., Gutierrez Moreno, J. J., Bönisch, M., Brackmann, V., Giebeler, L., Gemming, T., Lekka, C. E., Gebert, A., Schnettler, R. & Eckert, J. (2014). Elastic softening of β-type Ti–Nb alloys by indium (In) additions. Journal of the Mechanical Behavior of Biomedical Materials, 39, 162–174.Google Scholar
- Callister, W. D. & Rethwisch, D. G. (2014). Materials science and engineering: An introduction (9th ed.). New York: Willey.Google Scholar
- Carswell, T. S. & Nason H. K. (1944). Effect of environmental conditions on the mechanical properties of organic plastics. In Symposium on Plastics. ASTM.Google Scholar
- Carter, C. B., & Norton, M. G. (2007). Ceramic Materials: Science and Engineering. Heidelberg: Springer.Google Scholar
- Chawla, K. K. (2012). Composite Materials: Science and Engineering. Heidelberg: Springer.CrossRefGoogle Scholar
- Darwis, D., Erizal, Abbas, B., Nurlidar, F. & Putra, D. P. (2015). Radiation processing of polymers for medical and pharmaceutical applications. Macromolecular Symposia, 353, 15–23.Google Scholar
- Davidson, J. A., Mishra, A. K., Kovacs, P., & Poggie, R. A. (1994). New surface-hardened, low-modulus, corrosion-resistant Ti-13Nb-13Zr alloy for total HIP arthroplasty. Bio-Medical Materials and Engineering, 4, 231–243.Google Scholar
- Dee, K. C., Puleo, D. A. & Bizios, R. (2003). An introduction to tissue-biomaterial interaction. New York: Wiley.Google Scholar
- Doni, Z., Alves, A. C., Toptan, F., Gomes, J. R., Ramalho, A., Buciumeanu, M., et al. (2013). Dry sliding and tribocorrosion behaviour of hot pressed CoCrMo biomedical alloy as compared with the cast CoCrMo and Ti6Al4 V alloys. Materials and Design, 52, 47–57.CrossRefGoogle Scholar
- Elliott, J. C. (1994). Structure and Chemistry of the Apatite and Other Calcium Orthophosphates. Amsterdam: Elsevier.Google Scholar
- Hench, L. L., & Wilson, J. (1993). An Introduction to Bioceramics. Singapore: World Scientific.CrossRefGoogle Scholar
- Hollinger, J. O. (2006). An Introduction to Biomaterials. Florida: CRC Press.Google Scholar
- Iwasaki, T., Nakatsuka, R., Murase, K., Takata, H., Nakamura, H., & Wakatano, S. (2013). Simple and rapid synthesis of magnetite/hydroxyapatite composite for hyperthermia treatment via a mechano chemicals route. International Journal of Molecular Science, 41, 9365–9378.CrossRefGoogle Scholar
- Jaimes, R. F. V. V., Afonso, M. L. C. D. A., Rogero, S. O., Agostinho, S. M. L. & Barbosa, C. A. (2010). New material for orthopedic implants: Electrochemical study of nickel free P558 stainless steel in minimum essential medium. Materials Letters, 64, 1476–1479.Google Scholar
- John, C. W. (2000). Biocompatibility of dental casting alloys: A review. Journal of Prosthetic Dentistry, 83, 223–234.CrossRefGoogle Scholar
- Kalpakjian, S. (2008). Manufacturing Processes for Engineering Materials (5th ed.). New York: Pearson Education.Google Scholar
- Landel, R. F., & Nielsen, L. E. (1993). Mechanical properties of polymers and composites. Bocca Raton: CRC Press.Google Scholar
- Lee, B. S., Matsumoto, H., & Chiba, A. (2011). Fractures in tensile deformation of biomedical Co-Cr-Mo-N alloys. Materials Letters, 65, 843–846.CrossRefGoogle Scholar
- Legeros, R. Z. (1993). Biodegradation and bioresorption of calcium phosphate ceramics. Clinical Materials, 14, 65–88.CrossRefGoogle Scholar
- Leinonen, S., Suokas, E., Veiranto, M., Tormala, P., Waris, T. & Ashammakhi, N. (2002). Healing power of bioadsorbable ciprofloxacin-containing self-reinforced poly(L/DL-lactide 70/30 bioactive glass 13 miniscrews in human cadaver bone. Journal of Craniofacial Surgery, 13, 212–218.Google Scholar
- Lewis, G. (2001). Properties of crosslinked ultra-high-molecular-weight polyethylene. Biomaterials, 22, 371–401.CrossRefGoogle Scholar
- Long, M., & Rack, H. J. (1998). Titanium alloys in total joint replacement – a materials science perspective. Biomaterials, 19, 1621–1639.CrossRefGoogle Scholar
- Maurus, P. B., & Kaeding, C. C. (2004). Bioabsorbable implant material review. Operative Techniques in Sports Medicine, 12, 158–160.CrossRefGoogle Scholar
- Middleton, J. C. & Tipton A. J. (2000). Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 21, 2335–2346.Google Scholar
- Middleton, J. C. & Tipton, A. J. (1998). Synthetic biodegradable polymers as medical devices. Med Plast Biomater [Online]. http://www.mddionline.com/article/synthetic-biodegradable-polymers-medical-devices.
- Miller, R. A., Brady, J. M., & Cutright, D. E. (1977). Degradation rates of oral resorbable implants (polylactates and polyglycolates: rate modification with changes in PLA/PGA copolymer ratios. Journal of Biomedical Materials Research, 11, 711–719.CrossRefGoogle Scholar
- Mitsunobu, T., Koizumi, Y., Lee, B.-S., Yamanaka, K., Matsumoto, H., Li, Y., & Chiba, A. (2014). Role of strain-induced martensitic transformation on extrusion and intrusion formation during fatigue deformation of biomedical Co–Cr–Mo–N alloys. Acta Materialia, 81, 377–385.CrossRefGoogle Scholar
- Narayan, R., Bose, S., & Bandyopadhyay, A. (2015). Biomaterials Science: Processing, Properties and Applications V: Ceramic Transactions. New Jersey: John Wiley and Sons.CrossRefGoogle Scholar
- Navarro, M., Michiardi, A., Castaño, O., & Planell, J. A. (2008). Biomaterials in orthopaedics. Journal of the Royal Society, Interface, 5, 1137–1158.CrossRefGoogle Scholar
- Niinomi, M., Nakai, M., & Hieda, J. (2012). Development of new metallic alloys for biomedical applications. Acta Biomaterialia, 8, 3888–3903.CrossRefGoogle Scholar
- Park, J., & Lakes, R. S. (2007). Biomaterials: An Introduction. Heidelberg: Springer.Google Scholar
- Patel, B., Favaro, G., Inam, F., Reece, M. J., Angadji, A., Bonfield, W., et al. (2012). Cobalt-based orthopaedic alloys: Relationship between forming route, microstructure and tribological performance. Materials Science and Engineering C: Materials for Biological Applications, 32, 1222–1229.CrossRefGoogle Scholar
- Rack, H. J., & Qazi, J. I. (2006). Titanium alloys for biomedical applications. Materials Science and Engineering C: Materials for Biological Applications, 26, 1269–1277.CrossRefGoogle Scholar
- Ratner, B. D. (2004). Biomaterials Science: Introduction to Materials in Medicine. California: Elsevier Academic Press.Google Scholar
- Ratner, B. D., Hoffman, A. S., Schoen, F. J. & Lemons, J. E. (2013). Introduction—biomaterials science: An evolving, multidisciplinary endeavor. In Lemons, J. E. (Ed.), Biomaterials science (3rd ed.). Waltham: Academic Press.Google Scholar
- Sáenz, A., Rivera-Muñoz, E., Brostow, W. V., & Castaño, M. (1999). Ceramic biomaterials: An introductory overview. Journal of Materials Education, 21, 297–306.Google Scholar
- Sakka, S., Ben, Ayed, F. & Bouaziz, J. (2012). Mechanical properties of tricalcium phosphate–alumina composites. In IOP conference series: materials science and engineering, 28, 012028.Google Scholar
- Smethurst, E. (1981). A new stainless steel alloy for surgical implants compared to 316 S12. Biomaterials, 2, 116–119.CrossRefGoogle Scholar
- Taarea, D. & Bakhtiyarov, S. I. (2004). 14 - General physical properties. In Totemeier, W. F. G. C. (Ed.), Smithells metals reference book (8th ed.). Oxford: Butterworth-Heinemann.Google Scholar
- Talha, M., Behera, C. K., & Sinha, O. P. (2013). A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications. Materials Science and Engineering C: Materials for Biological Applications, 33, 3563–3575.CrossRefGoogle Scholar
- Thamaraiselvi, T. V., & Rajeswari, S. (2004). Biological evaluation of bioceramics materials – a review. Trends in Biomaterials and Artificial Organs, 18, 9–17.Google Scholar
- Ulum, M. F., Arafat, A., Noviana, D., Yusop, A. H., Nasution, A. K. Abdul Kadir, M. R. & Hermawan, H. (2014). In vitro and in vivo degradation evaluation of novel iron-bioceramic composite for bone implant application. Materials Science and Engineering C: Materials for Biological Applications, 36, 336–344.Google Scholar
- Vallet-Regí, M. (2010). Evolution of bioceramics within the field of biomaterials. Comptes Rendus Chimie, 13, 174–185.CrossRefGoogle Scholar
- Walker, J. C., Cook, R. B., Murray, J. W., & Clare, A. T. (2013). Pulsed electron beam surface melting of CoCrMo alloy for biomedical applications. Wear, 301, 250–256.CrossRefGoogle Scholar
- Wang, Y. B., Zheng, Y. F., Wei, S. C., & Li, M. (2011). In vitro study on Zr-based bulk metallic glasses as potential biomaterials. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 96, 34–46.CrossRefGoogle Scholar
- Ward, I. M. & Sweeney, J. (2012). Mechanical properties of solid polymers. New York: Wiley.Google Scholar
- Yan, Y., Neville, A., & Dowson, D. (2007). Tribo-corrosion properties of cobalt-based medical implant alloys in simulated biological environments. Wear, 263, 1105–1111.CrossRefGoogle Scholar
- Zdrahala, R. J., & Zdrahala, I. J. (1999). Biomedical applications of polyurethanes: a review of past promises, present realities, and a vibrant future. Journal of Biomaterials Applications, 14, 67–90.Google Scholar