The Effect of Self-Poisoning on Crystal Morphology and Growth Rates
Abstract
Recent extensive experimental work and the limited theoretical studies of the phenomenon ofself-poisoning of the crystal growth face are reviewed. The effect arises from incorrect but nearlystable stem attachments which obstruct productive growth. Experimental data on the temperature andconcentration dependence of growth rates and the morphology of long-chain monodisperse n-alkanesfrom C162H326 to C390H782are surveyed and compared to some previously established data on poly(ethylene oxide) fractions, aswell as on polyethylene. The anomalous growth rate minima in both temperature and concentration dependenceof growth rates are accompanied by profound changes in crystal habits, which have been analysed interms of growth rates on different crystallographic faces, and in terms of separate rates of stepnucleation and propagation. In some cases non-nucleated rough-surface growth is approached. Thephenomena covered include “poisoning” minima induced by guest species, the “dilutionwave” effect, autocatalytic crystallization, pre-ordering in solution, two-dimensional nucleation,and the kinetic roughening and tilt of basal surfaces.
Abbreviations
- A
Stem attachment rate
- a0,b0
Unit cell parameters
- AFM
Atomic force microscopy
- B
Stem detachment rate
- b
Width of a molecular chain
- E
Extended chain form (= F1)
- F2, F3, …, Fm
“Integer forms” with chains folded in two, three etc.
- ΔF
Overall free energy of crystallization
- ϕ
Chain tilt angle with respect to layer normal
- φ
Obtuse angle between (110) and (−110) planes in alkane and polyethylene crystals.φ/2 = tan−1(a0/b0)
- Δϕ
Bulk free energy of crystallization
- G
Crystal growth rate
- Δhf
Heat of fusion
- i
Rate of initiation (secondary nucleation) of a new row of stems on crystal growthface
- IF
Integer folded
- K
Slope of the linear dependence of G on ΔT
- L
Chain length
- l
Length of straight-chain segment traversing the crystal (stem length)
- lSAXS
SAXS long period
- LH theory
The theory of Lauritzen and Hoffman
- m = L/l
Number of folds per chain +1
- Mn
Number average molecular mass
- n
Number of monomer repeat units per chain (e.g., number of carbons in an alkane); alsoreaction order
- NIF
Non-integer folded form
- PE
Polyethylene
- PEO
Poly(ethylene oxide)
- q
Modulus of the wavevector, q = 4π(sin θ)/λ,where θ is half the scattering angle and λ is radiation wavelength
- SANS
Small-angle neutron scattering
- SAXS
Small-angle X-ray scattering
- σ
Side-surface free energy
- σe
End- or fold-surface free energy
- Tc
Crystallization temperature
- TcFx-Fy
Growth transition temperature between two successive folded forms (e.g., T c E-F2 is the temperature of transition between extended (E) and once-folded (F2)chain growth)
- Td
Dissolution temperature
- Tm
Melting temperature
- TR
Roughening transition temperature
- ΔT
Tm − Tc or Td − Tc = supercooling
- v
Rate of step propagation on a crystal growth face (often also referred to as g)
Preview
Unable to display preview. Download preview PDF.
References
- 1.Brooke GM, Burnett S, Mohammed S, Proctor D, Whiting MC (1996) J Chem Soc Perkin Trans 1:1635 CrossRefGoogle Scholar
- 2.Lee KS, Wegner G (1985) Makromol Chem Rapid Commun 6:203 Google Scholar
- 3.Brooke GM, Burnett S, Mohammed S, Proctor D, Whiting MC (1996) J Chem Soc Perkin Trans 1:1635 CrossRefGoogle Scholar
- 4.Brooke GM, Mohammed S, Whiting MC (1999) Polymer 49:773 CrossRefGoogle Scholar
- 5.Atkins EDT, Hill MJ, Jones NA, Sikorski P (2000) J Mater Sci 35:5179 CrossRefGoogle Scholar
- 6.Organ SJ, private communication Google Scholar
- 7.Ungar G, Zeng XB (2001) Chem Rev 101:4157 CrossRefGoogle Scholar
- 8.For a review of polymer crystallization theory see: Armitstead K, Golbeck-Wood G (1992) Adv Polym Sci 100:219 Google Scholar
- 9.Ungar G, Stejny J, Keller A, Bidd I, Whiting MC (1985) Science 229:386 CrossRefGoogle Scholar
- 10.Magonov SN, Yerina NA, Ungar G, Reneker DH, Ivanov DA (2003) Macromolecules 36:5637 CrossRefGoogle Scholar
- 11.Ungar G, Keller A (1986) Polymer 27:1835 CrossRefGoogle Scholar
- 12.Ungar G, Zeng XB, Brooke GM, Mohammed S (1998) Macromolecules 31:1875 CrossRefGoogle Scholar
- 13.Zeng XB, Ungar G, Spells SJ (2000) Polymer 41:8775 CrossRefGoogle Scholar
- 14.Zeng XB, Ungar G, Spells SJ, Brooke GM, Farren C, Harden A (2003) Phys Rev Lett 90:155508 CrossRefGoogle Scholar
- 15.Zeng XB, Ungar G, Spells SJ, King S (2004) Real-time SANS study of transient phases in polymer crystallization. Highlights of ISIS Science, Ann Rep Rutherford-Appleton Lab (in press) Google Scholar
- 16.Hoffman JD, Davis GT, Lauritzen JI Jr (1976) In: Hannay NB (ed) Treatise on solid-state chemistry, vol 3. Plenum, New York, pp 497~614 CrossRefGoogle Scholar
- 17.Hoffman JD (1997) Polymer 38:3151 CrossRefGoogle Scholar
- 18.Kovacs AJ, Gonthier A, Straupe C (1975) J Polym Sci Polym Symp 50:283 Google Scholar
- 19.Hoffman JD (1986) Macromolecules 19:1124 CrossRefGoogle Scholar
- 20.Hoffman JD (1985) Macromolecules 18:772 CrossRefGoogle Scholar
- 21.Sadler DM (1985) J Polym Sci Polym Phys 23:1533 CrossRefGoogle Scholar
- 22.Sadler DM (1983) Polymer 24:1401 CrossRefGoogle Scholar
- 23.Point JJ, Kovacs A (1980) Macromolecules 13:399 CrossRefGoogle Scholar
- 24.Toda A (1986) J Phys Soc Jpn 55:3419 Google Scholar
- 25.Ungar G (1993) In: Dosiere M (ed) Polymer crystallization. NATO ASI Series. Kluwer, Dordrecht, pp 63~72 Google Scholar
- 26.Ungar G, Keller A (1987) Polymer 28:1899 CrossRefGoogle Scholar
- 27.Organ SJ, Ungar G, Keller A (1989) Macromolecules 22:1995 CrossRefGoogle Scholar
- 28.Organ SJ, Keller A, Hikosaka M, Ungar G (1996) Polymer 37:2517 CrossRefGoogle Scholar
- 29.Putra EGR, Ungar G (2003) Macromolecules 36:5214 CrossRefGoogle Scholar
- 30.de Silva DSM, Ungar G, in preparation Google Scholar
- 31.de Silva DSM, Zeng XB, Ungar G, in preparation Google Scholar
- 32.Organ SJ, Keller A (1985) J Mater Sci 20:1571 CrossRefGoogle Scholar
- 33.Toda A (1991) Polymer 32:771 CrossRefGoogle Scholar
- 34.Boda E, Ungar G, Brooke GM, Burnett S, Mohammed S, Proctor D, Whiting MC (1997) Macromolecules 30:4674 CrossRefGoogle Scholar
- 35.Organ SJ, Barham PJ, Hill MJ, Keller A, Morgan RL (1997) J Polym Sci Polym Phys 35:775 CrossRefGoogle Scholar
- 36.Sutton SJ, Vaughan AS, Bassett DC (1996) Polymer 37:5735 CrossRefGoogle Scholar
- 37.Hobbs JK, Hill MJ, Barham PJ (2001) Polymer 42:2167 CrossRefGoogle Scholar
- 38.Morgan RL, Barham PJ, Hill MJ, Keller A, Organ SJ (1998) J Macromol Sci Phys B 37:319 CrossRefGoogle Scholar
- 39.Putra EGR, Ungar G (2003) Macromolecules 36:3812 CrossRefGoogle Scholar
- 40.Cheng SZD, Chen JH (1991) J Polym Sci Polym Phys 29:311 CrossRefGoogle Scholar
- 41.Hosier IL, Bassett DC, Vaughan AS (2000) Macromolecules 33:8781 CrossRefGoogle Scholar
- 42.Zeng XB, Ungar G (2001) Macromolecules 34:6945 CrossRefGoogle Scholar
- 43.Zeng XB, Ungar G, Spells SJ, Brooke GM, Farren C, Harden A (2003) Phys Rev Lett 90:155508 CrossRefGoogle Scholar
- 44.Ungar G, Mandal P, Higgs PG, de Silva DSM, Boda E, Chen CM (2000) Phys Rev Lett 85:4397 CrossRefGoogle Scholar
- 45.Putra EGR, Ungar G, in preparation Google Scholar
- 46.Higgs PG, Ungar G (2001) J Chem Phys 114:6958 CrossRefGoogle Scholar
- 47.Fisher RA (1937) Ann Eugen 7:355 CrossRefGoogle Scholar
- 48.Sadler DM, Gilmer GH (1987) Polym Commun 28:243 CrossRefGoogle Scholar
- 49.Higgs PG, Ungar G (1994) J Chem Phys 100:640 CrossRefGoogle Scholar
- 50.Keith HD (1964) J Appl Phys 35:3115 CrossRefGoogle Scholar
- 51.Bassett DC, Hodge AM (1981) Proc R Soc Lond A 377:25 CrossRefGoogle Scholar
- 52.Ungar G, Putra EGR (2001) Macromolecules 34:5180 CrossRefGoogle Scholar
- 53.Waddon AJ, Ungar G, in preparation Google Scholar
- 54.Khoury F (1979) Faraday Discuss Chem Soc 68:404 Google Scholar
- 55.Mansfield ML (1988) Polymer 29:1755 CrossRefGoogle Scholar
- 56.Point JJ, Villers D (1991) J Cryst Growth 114:228 CrossRefGoogle Scholar
- 57.Frank FC (1974) J Cryst Growth 22:233 CrossRefGoogle Scholar
- 58.Hoffman JD, Miller RL (1989) Macromolecules 22:3038, 3502; Hoffman JD, Miller RL (1991) Polymer 32:963 CrossRefGoogle Scholar
- 59.Toda A (1993) Faraday Discuss 95:129 CrossRefGoogle Scholar
- 60.Shcherbina M, Ungar G, in preparation Google Scholar
- 61.Toda A (2003) J Chem Phys 118:8446 CrossRefGoogle Scholar
- 62.Sadler DM, Gilmer GH (1988) Phys Rev B 38:5684 CrossRefGoogle Scholar
- 63.Buckley CP, Kovacs AJ (1984) In: Hall IH (ed) Structure of crystalline polymers. Elsevier, London, pp 261~307 Google Scholar
- 64.Kovacs AJ, Gonthier A (1972) Kolloid Z Z Polym 250:530 CrossRefGoogle Scholar
- 65.Briber RM, Khoury F (1993) J Polym Sci Polym Phys 31:1253 CrossRefGoogle Scholar
- 66.Toda A, Arita T, Hikosaka M (2001) Polymer 42:2223 CrossRefGoogle Scholar
- 67.Pechhold W (1967) Kolloid Z Z Polym 216:235 CrossRefGoogle Scholar
- 68.Heck B, Strobl G, Grasruck M (2003) Eur Phys J E 11:117 CrossRefGoogle Scholar
- 69.Putra EGR, Ungar G, submitted Google Scholar
- 70.Point JJ (1979) Faraday Discuss Chem Soc 68:167 CrossRefGoogle Scholar
- 71.Doye JPK, Frenkel D (1998) J Chem Phys 109:10033 CrossRefGoogle Scholar
- 72.Hikosaka M (1987) Polymer 28:1257; Polymer (1990) 31:458 CrossRefGoogle Scholar
- 73.Welch P, Muthukumar M (2001) Phys Rev Lett 87:218302 CrossRefGoogle Scholar
- 74.Frank FC, Tosi M (1961) Proc R Soc Lond A 263:323 CrossRefGoogle Scholar
- 75.Sadler DM, Gilmer GH (1984) Polymer 24:1446 CrossRefGoogle Scholar
- 76.Okuda K, Yoshida T, Sugita M, Asahina M (1967) J Polym Sci A-2 5:465 Google Scholar
- 77.Bassett DC, Frank FC, Keller A (1963) Phil Mag 8:1753 CrossRefGoogle Scholar
- 78.Khoury F (1979) Faraday Discuss Chem Soc 68:404 Google Scholar
- 79.Bassett DC, Hodge AM (1981) Proc R Soc Lond A 377:25 CrossRefGoogle Scholar
- 80.Guttman CM, DiMarzio EA, Hoffman JD (1981) Polymer 22:1466 CrossRefGoogle Scholar
- 81.Smith AE (1953) J Chem Phys 21:2229 CrossRefGoogle Scholar
- 82.Shearer HMM, Vand V (1956) Acta Crystallogr 9:379 CrossRefGoogle Scholar
- 83.Piesczek W, Strobl GR, Malzahn K (1974) Acta Crystallogr B 30:1278 CrossRefGoogle Scholar
- 84.de Silva DSM, Zeng XB, Ungar G, Spells SJ (2002) Macromolecules 35:7730 CrossRefGoogle Scholar
- 85.Brooke GM, Farren C, Harden A, Whiting MC (2001) Polymer 42:2777 CrossRefGoogle Scholar
- 86.de Silva DSM, Zeng XB, Ungar G, Spells SJ (2003) J Macromol Sci Phys 42:915 CrossRefGoogle Scholar
- 87.Abo el Maaty MI, Bassett DC (2001) Polymer 42:4957 CrossRefGoogle Scholar
- 88.Blundell DJ, Liggat JJ, Flory A (1992) Polymer 33:2475 CrossRefGoogle Scholar
- 89.Ten Hove CF, De Meersman B, Penelle J, Jonas AM (2004) Proc IUPAC Macro 2004, Paris Google Scholar