Advertisement

The Effect of Self-Poisoning on Crystal Morphology and Growth Rates

  • G. Ungar
  • E. G. R. Putra
  • D. S. M. de Silva
  • M. A. Shcherbina
  • A. J. Waddon
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 180)

Abstract

Recent extensive experimental work and the limited theoretical studies of the phenomenon ofself-poisoning of the crystal growth face are reviewed. The effect arises from incorrect but nearlystable stem attachments which obstruct productive growth. Experimental data on the temperature andconcentration dependence of growth rates and the morphology of long-chain monodisperse n-alkanesfrom C162H326 to C390H782are surveyed and compared to some previously established data on poly(ethylene oxide) fractions, aswell as on polyethylene. The anomalous growth rate minima in both temperature and concentration dependenceof growth rates are accompanied by profound changes in crystal habits, which have been analysed interms of growth rates on different crystallographic faces, and in terms of separate rates of stepnucleation and propagation. In some cases non-nucleated rough-surface growth is approached. Thephenomena covered include “poisoning” minima induced by guest species, the “dilutionwave” effect, autocatalytic crystallization, pre-ordering in solution, two-dimensional nucleation,and the kinetic roughening and tilt of basal surfaces.

Polymer crystallization Nucleation Long alkanes Surface roughness Curved faces 

Abbreviations

A

Stem attachment rate

a0,b0

Unit cell parameters

AFM

Atomic force microscopy

B

Stem detachment rate

b

Width of a molecular chain

E

Extended chain form (= F1)

F2, F3, …, Fm

“Integer forms” with chains folded in two, three etc.

ΔF

Overall free energy of crystallization

ϕ

Chain tilt angle with respect to layer normal

φ

Obtuse angle between (110) and (−110) planes in alkane and polyethylene crystals.φ/2 = tan−1(a0/b0)

Δϕ

Bulk free energy of crystallization

G

Crystal growth rate

Δhf

Heat of fusion

i

Rate of initiation (secondary nucleation) of a new row of stems on crystal growthface

IF

Integer folded

K

Slope of the linear dependence of G on ΔT

L

Chain length

l

Length of straight-chain segment traversing the crystal (stem length)

lSAXS

SAXS long period

LH theory

The theory of Lauritzen and Hoffman

m = L/l

Number of folds per chain +1

Mn

Number average molecular mass

n

Number of monomer repeat units per chain (e.g., number of carbons in an alkane); alsoreaction order

NIF

Non-integer folded form

PE

Polyethylene

PEO

Poly(ethylene oxide)

q

Modulus of the wavevector, q = 4π(sin θ)/λ,where θ is half the scattering angle and λ is radiation wavelength

SANS

Small-angle neutron scattering

SAXS

Small-angle X-ray scattering

σ

Side-surface free energy

σe

End- or fold-surface free energy

Tc

Crystallization temperature

TcFx-Fy

Growth transition temperature between two successive folded forms (e.g., T c E-F2 is the temperature of transition between extended (E) and once-folded (F2)chain growth)

Td

Dissolution temperature

Tm

Melting temperature

TR

Roughening transition temperature

ΔT

TmTc or TdTc = supercooling

v

Rate of step propagation on a crystal growth face (often also referred to as g)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brooke GM, Burnett S, Mohammed S, Proctor D, Whiting MC (1996) J Chem Soc Perkin Trans 1:1635 CrossRefGoogle Scholar
  2. 2.
    Lee KS, Wegner G (1985) Makromol Chem Rapid Commun 6:203 Google Scholar
  3. 3.
    Brooke GM, Burnett S, Mohammed S, Proctor D, Whiting MC (1996) J Chem Soc Perkin Trans 1:1635 CrossRefGoogle Scholar
  4. 4.
    Brooke GM, Mohammed S, Whiting MC (1999) Polymer 49:773 CrossRefGoogle Scholar
  5. 5.
    Atkins EDT, Hill MJ, Jones NA, Sikorski P (2000) J Mater Sci 35:5179 CrossRefGoogle Scholar
  6. 6.
    Organ SJ, private communication Google Scholar
  7. 7.
    Ungar G, Zeng XB (2001) Chem Rev 101:4157 CrossRefGoogle Scholar
  8. 8.
    For a review of polymer crystallization theory see: Armitstead K, Golbeck-Wood G (1992) Adv Polym Sci 100:219 Google Scholar
  9. 9.
    Ungar G, Stejny J, Keller A, Bidd I, Whiting MC (1985) Science 229:386 CrossRefGoogle Scholar
  10. 10.
    Magonov SN, Yerina NA, Ungar G, Reneker DH, Ivanov DA (2003) Macromolecules 36:5637 CrossRefGoogle Scholar
  11. 11.
    Ungar G, Keller A (1986) Polymer 27:1835 CrossRefGoogle Scholar
  12. 12.
    Ungar G, Zeng XB, Brooke GM, Mohammed S (1998) Macromolecules 31:1875 CrossRefGoogle Scholar
  13. 13.
    Zeng XB, Ungar G, Spells SJ (2000) Polymer 41:8775 CrossRefGoogle Scholar
  14. 14.
    Zeng XB, Ungar G, Spells SJ, Brooke GM, Farren C, Harden A (2003) Phys Rev Lett 90:155508 CrossRefGoogle Scholar
  15. 15.
    Zeng XB, Ungar G, Spells SJ, King S (2004) Real-time SANS study of transient phases in polymer crystallization. Highlights of ISIS Science, Ann Rep Rutherford-Appleton Lab (in press) Google Scholar
  16. 16.
    Hoffman JD, Davis GT, Lauritzen JI Jr (1976) In: Hannay NB (ed) Treatise on solid-state chemistry, vol 3. Plenum, New York, pp 497~614 CrossRefGoogle Scholar
  17. 17.
    Hoffman JD (1997) Polymer 38:3151 CrossRefGoogle Scholar
  18. 18.
    Kovacs AJ, Gonthier A, Straupe C (1975) J Polym Sci Polym Symp 50:283 Google Scholar
  19. 19.
    Hoffman JD (1986) Macromolecules 19:1124 CrossRefGoogle Scholar
  20. 20.
    Hoffman JD (1985) Macromolecules 18:772 CrossRefGoogle Scholar
  21. 21.
    Sadler DM (1985) J Polym Sci Polym Phys 23:1533 CrossRefGoogle Scholar
  22. 22.
    Sadler DM (1983) Polymer 24:1401 CrossRefGoogle Scholar
  23. 23.
    Point JJ, Kovacs A (1980) Macromolecules 13:399 CrossRefGoogle Scholar
  24. 24.
    Toda A (1986) J Phys Soc Jpn 55:3419 Google Scholar
  25. 25.
    Ungar G (1993) In: Dosiere M (ed) Polymer crystallization. NATO ASI Series. Kluwer, Dordrecht, pp 63~72 Google Scholar
  26. 26.
    Ungar G, Keller A (1987) Polymer 28:1899 CrossRefGoogle Scholar
  27. 27.
    Organ SJ, Ungar G, Keller A (1989) Macromolecules 22:1995 CrossRefGoogle Scholar
  28. 28.
    Organ SJ, Keller A, Hikosaka M, Ungar G (1996) Polymer 37:2517 CrossRefGoogle Scholar
  29. 29.
    Putra EGR, Ungar G (2003) Macromolecules 36:5214 CrossRefGoogle Scholar
  30. 30.
    de Silva DSM, Ungar G, in preparation Google Scholar
  31. 31.
    de Silva DSM, Zeng XB, Ungar G, in preparation Google Scholar
  32. 32.
    Organ SJ, Keller A (1985) J Mater Sci 20:1571 CrossRefGoogle Scholar
  33. 33.
    Toda A (1991) Polymer 32:771 CrossRefGoogle Scholar
  34. 34.
    Boda E, Ungar G, Brooke GM, Burnett S, Mohammed S, Proctor D, Whiting MC (1997) Macromolecules 30:4674 CrossRefGoogle Scholar
  35. 35.
    Organ SJ, Barham PJ, Hill MJ, Keller A, Morgan RL (1997) J Polym Sci Polym Phys 35:775 CrossRefGoogle Scholar
  36. 36.
    Sutton SJ, Vaughan AS, Bassett DC (1996) Polymer 37:5735 CrossRefGoogle Scholar
  37. 37.
    Hobbs JK, Hill MJ, Barham PJ (2001) Polymer 42:2167 CrossRefGoogle Scholar
  38. 38.
    Morgan RL, Barham PJ, Hill MJ, Keller A, Organ SJ (1998) J Macromol Sci Phys B 37:319 CrossRefGoogle Scholar
  39. 39.
    Putra EGR, Ungar G (2003) Macromolecules 36:3812 CrossRefGoogle Scholar
  40. 40.
    Cheng SZD, Chen JH (1991) J Polym Sci Polym Phys 29:311 CrossRefGoogle Scholar
  41. 41.
    Hosier IL, Bassett DC, Vaughan AS (2000) Macromolecules 33:8781 CrossRefGoogle Scholar
  42. 42.
    Zeng XB, Ungar G (2001) Macromolecules 34:6945 CrossRefGoogle Scholar
  43. 43.
    Zeng XB, Ungar G, Spells SJ, Brooke GM, Farren C, Harden A (2003) Phys Rev Lett 90:155508 CrossRefGoogle Scholar
  44. 44.
    Ungar G, Mandal P, Higgs PG, de Silva DSM, Boda E, Chen CM (2000) Phys Rev Lett 85:4397 CrossRefGoogle Scholar
  45. 45.
    Putra EGR, Ungar G, in preparation Google Scholar
  46. 46.
    Higgs PG, Ungar G (2001) J Chem Phys 114:6958 CrossRefGoogle Scholar
  47. 47.
    Fisher RA (1937) Ann Eugen 7:355 CrossRefGoogle Scholar
  48. 48.
    Sadler DM, Gilmer GH (1987) Polym Commun 28:243 CrossRefGoogle Scholar
  49. 49.
    Higgs PG, Ungar G (1994) J Chem Phys 100:640 CrossRefGoogle Scholar
  50. 50.
    Keith HD (1964) J Appl Phys 35:3115 CrossRefGoogle Scholar
  51. 51.
    Bassett DC, Hodge AM (1981) Proc R Soc Lond A 377:25 CrossRefGoogle Scholar
  52. 52.
    Ungar G, Putra EGR (2001) Macromolecules 34:5180 CrossRefGoogle Scholar
  53. 53.
    Waddon AJ, Ungar G, in preparation Google Scholar
  54. 54.
    Khoury F (1979) Faraday Discuss Chem Soc 68:404 Google Scholar
  55. 55.
    Mansfield ML (1988) Polymer 29:1755 CrossRefGoogle Scholar
  56. 56.
    Point JJ, Villers D (1991) J Cryst Growth 114:228 CrossRefGoogle Scholar
  57. 57.
    Frank FC (1974) J Cryst Growth 22:233 CrossRefGoogle Scholar
  58. 58.
    Hoffman JD, Miller RL (1989) Macromolecules 22:3038, 3502; Hoffman JD, Miller RL (1991) Polymer 32:963 CrossRefGoogle Scholar
  59. 59.
    Toda A (1993) Faraday Discuss 95:129 CrossRefGoogle Scholar
  60. 60.
    Shcherbina M, Ungar G, in preparation Google Scholar
  61. 61.
    Toda A (2003) J Chem Phys 118:8446 CrossRefGoogle Scholar
  62. 62.
    Sadler DM, Gilmer GH (1988) Phys Rev B 38:5684 CrossRefGoogle Scholar
  63. 63.
    Buckley CP, Kovacs AJ (1984) In: Hall IH (ed) Structure of crystalline polymers. Elsevier, London, pp 261~307 Google Scholar
  64. 64.
    Kovacs AJ, Gonthier A (1972) Kolloid Z Z Polym 250:530 CrossRefGoogle Scholar
  65. 65.
    Briber RM, Khoury F (1993) J Polym Sci Polym Phys 31:1253 CrossRefGoogle Scholar
  66. 66.
    Toda A, Arita T, Hikosaka M (2001) Polymer 42:2223 CrossRefGoogle Scholar
  67. 67.
    Pechhold W (1967) Kolloid Z Z Polym 216:235 CrossRefGoogle Scholar
  68. 68.
    Heck B, Strobl G, Grasruck M (2003) Eur Phys J E 11:117 CrossRefGoogle Scholar
  69. 69.
    Putra EGR, Ungar G, submitted Google Scholar
  70. 70.
    Point JJ (1979) Faraday Discuss Chem Soc 68:167 CrossRefGoogle Scholar
  71. 71.
    Doye JPK, Frenkel D (1998) J Chem Phys 109:10033 CrossRefGoogle Scholar
  72. 72.
    Hikosaka M (1987) Polymer 28:1257; Polymer (1990) 31:458 CrossRefGoogle Scholar
  73. 73.
    Welch P, Muthukumar M (2001) Phys Rev Lett 87:218302 CrossRefGoogle Scholar
  74. 74.
    Frank FC, Tosi M (1961) Proc R Soc Lond A 263:323 CrossRefGoogle Scholar
  75. 75.
    Sadler DM, Gilmer GH (1984) Polymer 24:1446 CrossRefGoogle Scholar
  76. 76.
    Okuda K, Yoshida T, Sugita M, Asahina M (1967) J Polym Sci A-2 5:465 Google Scholar
  77. 77.
    Bassett DC, Frank FC, Keller A (1963) Phil Mag 8:1753 CrossRefGoogle Scholar
  78. 78.
    Khoury F (1979) Faraday Discuss Chem Soc 68:404 Google Scholar
  79. 79.
    Bassett DC, Hodge AM (1981) Proc R Soc Lond A 377:25 CrossRefGoogle Scholar
  80. 80.
    Guttman CM, DiMarzio EA, Hoffman JD (1981) Polymer 22:1466 CrossRefGoogle Scholar
  81. 81.
    Smith AE (1953) J Chem Phys 21:2229 CrossRefGoogle Scholar
  82. 82.
    Shearer HMM, Vand V (1956) Acta Crystallogr 9:379 CrossRefGoogle Scholar
  83. 83.
    Piesczek W, Strobl GR, Malzahn K (1974) Acta Crystallogr B 30:1278 CrossRefGoogle Scholar
  84. 84.
    de Silva DSM, Zeng XB, Ungar G, Spells SJ (2002) Macromolecules 35:7730 CrossRefGoogle Scholar
  85. 85.
    Brooke GM, Farren C, Harden A, Whiting MC (2001) Polymer 42:2777 CrossRefGoogle Scholar
  86. 86.
    de Silva DSM, Zeng XB, Ungar G, Spells SJ (2003) J Macromol Sci Phys 42:915 CrossRefGoogle Scholar
  87. 87.
    Abo el Maaty MI, Bassett DC (2001) Polymer 42:4957 CrossRefGoogle Scholar
  88. 88.
    Blundell DJ, Liggat JJ, Flory A (1992) Polymer 33:2475 CrossRefGoogle Scholar
  89. 89.
    Ten Hove CF, De Meersman B, Penelle J, Jonas AM (2004) Proc IUPAC Macro 2004, Paris Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2005

Authors and Affiliations

  • G. Ungar
    • 1
  • E. G. R. Putra
    • 1
  • D. S. M. de Silva
    • 1
  • M. A. Shcherbina
    • 1
  • A. J. Waddon
    • 1
  1. 1.Department of Engineering MaterialsUniversity of SheffieldSheffield S1 3JDUK

Personalised recommendations