Article
Microstructural study of cetyltrimethylammonium bromide / 1-butanol / salt / water system — SANS and 2D-NOESY analysis
aDepartment of Chemistry, Veer Narmad South Gujarat University, Surat 395 007, India.
bNeutron Scattering Laboratory, National Nuclear Energy Agency of Indonesia, BATAN, Kawasan Puspiptek Serpong, Tangerang 15314, Indonesia.
cDepartment of Chemistry, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada.
Published on the web 1 March 2012.
Received May 25, 2011. Accepted August 19, 2011.
Canadian Journal of Chemistry, 2012, 90(3): 314-320, https://doi.org/10.1139/v11-155
Abstract
Interaction of 1-butanol (BuOH) with a cationic surfactant, cetyltrimethylammonium bromide (CTAB) aggregate, in water and salt solution has been studied by viscometry, small-angle neutron scattering (SANS), and 2D-NMR techniques. The experimental results are interpreted in terms of a possible micellar growth occurring in the presence of added alcohol and salt. It was observed that the addition of BuOH strongly influences the viscosity of the CTAB/salt micellar system, reaching a peak viscosity at about 0.5% w/v of BuOH over a range of salt concentrations. Scattering measurements support the idea of a structural transformation by the observation of a spectral shift (broadening) as the total concentration of surfactant varies, indicating a decrease in the intermicellar distance and narrow size distribution. The chemical shift from 1H NMR measurements gave complementary data on the solubilization of BuOH in CTAB micelles, whereas the expected locus (site) of the additive added to the surfactant including the dynamics of the molecules in micellar aggregates were successfully correlated by significant and positive cross peaks obtained from two-dimensional nuclear Overhauser effect spectroscopy (2D-NOESY).
Keywords: micellar growth, solubilization, viscosity, SANS, 2D-NOESY
References
- 1 Eicke, H.-F. Surfactants in Nonpolar Solvents, Aggregation and Micellization. In Topics in Current Chemistry: Micelles; Springer: Berlin, 1980; Vol. 87, pp 85–145. Google Scholar
- 2 Rosen, M. J. Surfactants and Interfacial Phenomena, 3rd ed.; Wiley–Interscience: New York, 1982. Google Scholar
- 3 Fainerman V B, Miller R, Aksenenko E V. 2002. Adv. Colloid Interface Sci. 96(1–3): 339 Crossref, Google Scholar.
- 4
- 5 Imae T, Abe A, Taguchi Y, Ikeda S. 1986. J. Colloid Interface Sci. 109(2): 567 Crossref, Google Scholar.
- 6
- 7 (b) Zana R, Yiv S, Strazielle C, Lianos P. 1981. J. Colloid Interface Sci. 80(1): 208 Crossref, Google Scholar;(c) Candau S, Hirsch E, Zana R. 1982. J. Colloid Interface Sci. 88(2): 428 Crossref, Google Scholar.
- 8 Attwood D, Mosquera V, Rodriguez J, Garcia M, Suarez M J. 1994. Colloid Polym. Sci. 272(5): 584 Crossref, Google Scholar.
- 9 González-Pérez A, Czapkiewicz J, Del Castillo J L, Rodríguez J R. 2003. J. Colloid Interface Sci. 262(2): 525 Crossref, Google Scholar.
- 10 Kuperkar K, Abezgauz L, Danino D, Verma G, Hassan P A, Aswal V K, Varade D, Bahadur P. 2008. J. Colloid Interface Sci. 323(2): 403 Crossref, Google Scholar.
- 11
- 12
- 13 Førland G M, Samseth J, Høiland H, Mortensen K. 1994. J. Colloid Interface Sci. 164(1): 163 Crossref, Google Scholar.
- 14 (a) González-Pérez A J, Galán J, Rodríguez J R. 2004. Fluid Phase Equilib. 224(1): 7 Crossref, Google Scholar;(b) Galán J J, Del Castillo J L, González-Pérez A, Fuentes-Vázquez V, Rodríguez J R. 2007. J. Therm. Anal. Calorim. 87(1): 159 Crossref, Google Scholar.
- 15 Missel P J, Mazer N A, Benedek G B, Young C Y, Carey M C. 1980. J. Phys. Chem. 84(9): 1044 Crossref, Google Scholar.
- 16 Lin T L, Chen S H, Gabriel N E, Roberts M F. 1987. J. Phys. Chem. 91(2): 406 Crossref, Google Scholar.
- 17 Manne S, Schaffer T E, Huo Q, Hansma P K, Morse D E, Stucky G D, Aksay I A. 1997. Langmuir 13(24): 6382 Crossref, Google Scholar.
- 18
- 19 Abezgauz L, Kuperkar K, Hassan P A, Ramon O, Bahadur P, Danino D. 2010. J. Colloid Interface Sci. 342(1): 83 Crossref, Google Scholar.
- 20
- 21 Kuperkar K C, Mata J P, Bahadur P. 2011. Colloids Surf. Physicochem. Eng. Aspects 380(1–3): 60 Crossref, Google Scholar.
- 22
- 23 (a) Putra E G R, Bharoto E, Santoso A, Ikram J. 2009. Nucl. Instrum. Methods Phys. Res. A 600(1): 198 Crossref, Google Scholar;(b) Putra E G R, Ikram A, Santoso E, Bharoto B. 2007. J. Appl. Crystallogr. 40: s447 Crossref, Google Scholar;(c) Giri Rachman Putra E, Bharoto , Santoso E, Mulyana Y A. 2007. Neutron News 18(2): 23 Crossref, Google Scholar.
- 24 Dewhurst, C. GRASP: Graphical Reduction and Analysis SANS Program for Matlab. http://www.ill.eu/fileadmin/users files/Other Sites/lss-grasp/grasp_main.html; Institut Laue-Langevin: Grenoble, France, 2001–2007. Google Scholar
- 25
- 26
- 27 Yuan H Z, Luo L, Zhang L, Zhao S, Mao S Z, Yu J Y, Shen L F, Du Y R. 2002. Colloid Polym. Sci. 280(5): 479 Crossref, ISI, Google Scholar.
- 28 Shafiq Ullah A K M, Kamal I. 2007. BRAC Univ. J. 4(1): 59 Google Scholar.
- 29 Chen S H, Sheu E Y, Kalus J, Hoffman H. 1988. J. Appl. Crystallogr. 21(6): 751 Crossref, Google Scholar.
- 30 Engelskirchen S, Acharya D P, Garcia-Roman M, Kunieda H. 2006. Colloids Surf. A Physicochem. Eng. Asp. 279(1–3): 113 Crossref, Google Scholar.
- 31 Mao S Z, Du Y R. 2003. Acta Phys. Chim. Sin. 19(7): 675 Google Scholar.
- 32 McLachlan A A, Singh K, Marangoni D. 2010. Colloid Polym. Sci. 288(6): 653 Crossref, Google Scholar.