Nanoscale Clustering and Magnetic Properties of Mn x Fe3−x O4 Particles Prepared from Natural Magnetite
- 298 Downloads
- 18 Citations
Abstract
A series of Mn x Fe3−x O4 (0 ≤ x ≤ 1) nanoparticles was successfully synthesized via a simple coprecipitation method. The starting material was a natural magnetite purified from local iron sand. Crystallite nanoparticles were produced by drying without using a high calcination temperature. Rietveld analysis of the X-ray diffractometry (XRD) data for all samples demonstrated that the Mn ions partially substituted the Fe ions in the spinel cubic structure of the Fe3O4 to form Mn x Fe3−x O4 phases. We applied two lognormal spherical and single mass fractal models to the analysis of the small-angle neutron scattering (SANS) data and revealed that the primary Mn x Fe3−x O4 particles ranged in size from 1.5 to 3.8 nm and formed three-dimensional clusters as secondary structures. The samples displayed superparamagnetic behavior, having the saturation magnetization which was most likely influenced by the competing contribution from Mn, the sizes of the primary particles, and their clusters. Further analysis revealed that the zero-field-cooled and field-cooled curves of the Mn x Fe3−x O4 nanoclusters exhibited a superparamagnetic phenomenon with the lowest magnetic blocking temperature approximately 145 K.
Keywords
Nanoclusters MnxFe3−xO4 Coprecipitation Saturation magnetization Blocking temperature Natural magnetiteNotes
Acknowledgments
The authors would like to thank Dr. Mauro Porcu for the HRTEM characterization and the University of Tokyo, the RIKEN Nishina Center Japan, and the Neutron Scattering Laboratory at BATAN Serpong for the use of their characterization facilities. This research was partially supported by the BPPS and PKPI Programs from the Ministry of Education and Culture, Republic of Indonesia (A.T. and S.), “Penelitian Disertasi Doktor” (A.T.), and also “Hibah Kompetensi” of DP2M, Ditjen DIKTI, 2013-2015 (D.).
References
- 1.Shete, P.B., Patil, R.M., Tiwale, B.M., Pawar, S.H.: Water dispersible oleic acid-coated Fe3O4 nanoparticles for biomedical applications. J. Magn. Magn. Mater. 377, 406–410 (2015)ADSCrossRefGoogle Scholar
- 2.Shen, S., Wang, S., Zheng, R., Zhu, X., Jiang, X., Fu, D., Yang, W.: Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation. Biomaterials 39, 67–74 (2015)CrossRefGoogle Scholar
- 3.Meidanchi, A., Akhavan, O., Khoei, S., Shokri, A.A., Hajikarimi, Z., Khansari, N.: ZnFe2O4 nanoparticles as radiosensitizers in radiotherapy of human prostate cancer cells. Mater. Sci. Eng. C 46, 394–399 (2015)CrossRefGoogle Scholar
- 4.Ding, Y., Shen, S.Z., Sun, H., Sun, K., Liu, F., Qi, Y., Yan, J.: Design and construction of polymerized-chitosan coated Fe3O4 magnetic nanoparticles and its application for hydrophobic drug delivery. Mater. Sci. Eng. C 48, 487–498 (2015)CrossRefGoogle Scholar
- 5.Raj, B.G.S., Ramprasad, R.N.R., Asiri, A.M., Wu, J.J., Anandan, S.: Ultrasound assisted synthesis of Mn3O4 nanoparticles anchored graphene nanosheets for supercapacitor applications. Electrochimica Acta 156, 127–137 (2015)CrossRefGoogle Scholar
- 6.Ghaemi, N., Madaeni, S.S., Daraei, P., Rajabi, H., Zinadini, S., Alizadeh, A., Heydari, R., Beygzadeh, M., Ghouzivand, S.: Polyethersulfone membrane enhanced with iron oxide nanoparticles for copper removal from water: application of new functionalized Fe3O4 nanoparticles. Chem. Eng. J 263, 101–112 (2015)CrossRefGoogle Scholar
- 7.Ahalya, K., Suriyanarayanan, N., Ranjithkumar, V., et al.: Effect of cobalt substitution on structural and magnetic properties and chromium adsorption of manganese ferrite nano particles. J. Magn. Magn. Mater. 372, 208–213 (2014)ADSCrossRefGoogle Scholar
- 8.Martínez-Mera, I., Espinosa-Pesqueira, M.E., Pérez-Hernández, R., Arenas-Alatorre, J.: Synthesis of magnetite (Fe3O4) nanoparticles without surfactants at room temperature. Mater. Lett 61, 4447–4451 (2007)CrossRefGoogle Scholar
- 9.Amirabadizadeh, A., Farsi, H., Dehghani, M., Arabi, H.: Effect of substitutions of Zn for Mn on size and magnetic properties of Mn–Zn ferrite nanoparticles. J. Supercond. Nov. Magn. 25, 2763–2765 (2012)CrossRefGoogle Scholar
- 10.Sharifi, I., Shokrollahi, H., Amiri, S.: Ferrite-based magnetic nanofluids used in hyperthermia applications. J. Magn. Magn. Mater. 324, 903–915 (2012)ADSCrossRefGoogle Scholar
- 11.Niu, J.M., Mei, J.: Effect of temperature on Fe3O4 magnetic nanoparticles prepared by coprecipitation method. Adv. Mater. Res. 900, 172–176 (2014)CrossRefGoogle Scholar
- 12.Darminto, Cholishoh, M.N., Perdana, F.A., Baqiya, M.A., Mashuri, Cahyono, Y., Triwikantoro: Preparing Fe3O4 nanoparticles from Fe2+ ions source by co-precipitation process in various pH. AIP Conference Proceedings, pp 234–237. AIP Publishing (2011)Google Scholar
- 13.Cullity, B.D., Graham, C.D.: Introduction to magnetic materials. Wiley-IEEE Press, Hoboken (2008)CrossRefGoogle Scholar
- 14.Upadhyay, R., Davies, K., Wells, S., Charles, S.: Preparation and characterization of ultra-fine MnFe2O4 and MnxFe1−xFe2O4 spinel systems: I particles. J. Magn. Magn. Mater. 132, 249–257 (1994)ADSCrossRefGoogle Scholar
- 15.Saravanan, P., Alam, S., Kandpal, L.D., Mathur, G.N.: Effect of substitution of Mn ion on magnetic properties of Fe3O4 nanocrystallites. J. Mater. Sci. Lett. 21, 1135–1137 (2002)CrossRefGoogle Scholar
- 16.Doaga, A., Cojocariu, A.M., Amin, W., Heib, F., Bender, P., Hempelmann, R., Caltun, O.F.: Synthesis and characterizations of manganese ferrites for hyperthermia applications. Mater. Chem. Phys. 143, 305–310 (2013)CrossRefGoogle Scholar
- 17.Kim, B., Yang, J., Lim, E.-K., Park, J., Suh, J.-S., Park, H., Huh, Y.-M., Haam, S.: Double-ligand modulation for engineering magnetic nanoclusters. Nanoscale Res. Lett. 8, 104 (2013)ADSCrossRefGoogle Scholar
- 18.Shtykova, E.V., Huang, X., Remmes, N., Baxter, D., Stein, B., Dragnea, B., Svergun, D.I., Bronstein, L.M.: Structure and properties of iron oxide nanoparticles encapsulated by phospholipids with poly(ethylene glycol) tails. J. Phys. Chem. C 111, 18078–18086 (2007)CrossRefGoogle Scholar
- 19.Sari, W., Fitriyani, D., Putra, E.G.R., bin Mohamed, A.A., Ibrahim, N.: Fractal structures on silica aerogels containing titanium: a small angle neutron scattering study. AIP Conf. Proc. 1202, 185–188 (2010)ADSCrossRefGoogle Scholar
- 20.Bajpai, A.K., Likhitkar, S.: Investigation of magnetically enhanced swelling behaviour of superparamagnetic starch nanoparticles. Bull. Mater. Sci. 36, 15–24 (2013)CrossRefGoogle Scholar
- 21.Putra, E.G.R., Bharoto, Santoso, E., Ikram, A.: Improved performances of 36 m small-angle neutron scattering spectrometer BATAN in Serpong Indonesia. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 600, 198–202 (2009)ADSCrossRefGoogle Scholar
- 22.Dewhurst, C.: GRASANSP: graphical reduction and analysis SANS program for Matlab (2001)Google Scholar
- 23.Kohlbrecher, J., Bressler, I.: Software package SASfit for fitting small-angle scattering curves (2011)Google Scholar
- 24.Suzuki, M., Fullem, S.I., Suzuki, I.S., Wang, L., Zhong, C.-J.: Observation of superspin-glass behavior in Fe3O4 nanoparticles. Phys. Rev. B 79, 024418 (2009)ADSCrossRefGoogle Scholar
- 25.Pratapa, S., Susanti, L., Insany, Y.A.S., Alfiati, Z., Hartono, B., Mashuri, Taufiq, A., Fuad, A., Triwikantoro, Baqiya, M.A., Purwaningsih, S., Yahya, E.: Darminto: XRD line-broadening characteristics of M-oxides (M = Mg, Mg-Al, Y, Fe) nanoparticles produced by coprecipitation method. AIP Conf. Proc. 1284, 125–128 (2010)ADSCrossRefGoogle Scholar
- 26.Li, Y.H., Kouh, T., Shim, I.-B., Kim, C.S.: Investigation of cation distribution in single crystalline Fe3−xMnxO4 microspheres based on Mössbauer spectroscopy. J. Appl. Phys. 111, 07B544 (2012)Google Scholar
- 27.Yoon, H., Lee, J., Min, J., Wu, J., Kim, Y.: Synthesis, microstructure, and magnetic properties of monosized MnxZnyFe3−x−yO4 ferrite nanocrystals. Nanoscale Res. Lett. 8, 530 (2013)ADSCrossRefGoogle Scholar
- 28.Amighian, J., Karimzadeh, E., Mozaffari, M., et al.: The effect of Mn2+ substitution on magnetic properties of MnxFe3−xO4 nanoparticles prepared by coprecipitation method. J. Magn. Magn. Mater. 332, 157–162 (2013)ADSCrossRefGoogle Scholar
- 29.Wang, K.M., Lee, D.S., Horng, L., Chern, G.: Structural and magnetic properties of Fe3−xMnxO4 films. Int. Symp. Adv. Magn. Technol. 282, 73–77 (2004)Google Scholar
- 30.Wickham, D.G.: The chemical composition of spinels in the system Fe3O4-Mn3O4. J. Inorg. Nucl. Chem. 31, 313–320 (1969)CrossRefGoogle Scholar
- 31.Mazo-Zuluaga, J., Restrepo, J., Mejía-López, J.: Effect of surface anisotropy on the magnetic properties of magnetite nanoparticles: a Heisenberg–Monte Carlo study. J. Appl. Phys. 103, 113906_1–113906_8 (2008)CrossRefGoogle Scholar
- 32.Yusuf, S.M., Mukadam, M.D., De Teresa, J.M., Ibarra, M.R., Kohlbrecher, J., Heinemann, A., Wiedenmann, A.: Structural and magnetic properties of amorphous iron oxide. Phys. B Condens. Matter. 405, 1202–1206 (2010)ADSCrossRefGoogle Scholar
- 33.Paula, F.L.O., Aquino, R., da Silva, G.J., Depeyrot, J., Tourinho, F.A., Fossum, J.O., Knudsen, K.D.: Small-angle X-ray and small-angle neutron scattering investigations of colloidal dispersions of magnetic nanoparticles and clay nanoplatelets. J. Appl. Crystallogr., s269–s273 (2007)Google Scholar
- 34.Gadhvi, M., Upadhyay, R.V., Parekh, K., Mehta, R.V.: Magnetically textured ferrofluid in a non-magnetic matrix: magnetic properties. Bull. Mater. Sci. 27, 163–168 (2004)CrossRefGoogle Scholar
- 35.Teixeira, J.: Small-angle scattering by fractal systems. J. Appl. Crystallogr. 21, 781–785 (1988)CrossRefGoogle Scholar
- 36.Putra, E.G.R., Seong, B.S., Shin, E., Ikram, A., Ani, S.A., Darminto: Fractal structures on Fe3O4 ferrofluid: a small-angle neutron scattering study. J. Phys. Conf. Ser. 247 (2010)Google Scholar
- 37.Tang, S.C.N., Lo, I.M.C.: Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res 47, 2613–2632 (2013)CrossRefGoogle Scholar
- 38.Petosa, A.R., Jaisi, D.P., Quevedo, I.R., Elimelech, M., Tufenkji, N.: Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environ. Sci. Technol. 44, 6532–6549 (2010)ADSCrossRefGoogle Scholar
- 39.Giri, J., Pradhan, P., Somani, V., Chelawat, H., Chhatre, S., Banerjee, R., Bahadur, D.: Synthesis and characterizations of water-based ferrofluids of substituted ferrites [Fe1−x B xFe2O4, B = Mn, Co (x = 0–1)] for biomedical applications. J. Magn. Magn. Mater. 320, 724–730 (2008)ADSCrossRefGoogle Scholar
- 40.Rameshbabu, R., Ramesh, R., Kanagesan, S., Karthigeyan, A., Ponnusamy, S.: Synthesis and study of structural, morphological and magnetic properties of ZnFe2O4 nanoparticles. J. Supercond. Nov. Magn. 27, 1499–1502 (2014)CrossRefGoogle Scholar
- 41.Akbarzadeh, A., Samiei, M., Davaran, S.: Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett. 7, 144 (2012)ADSCrossRefGoogle Scholar
- 42.Liu, X.-D., Chen, H., Liu, S.-S., Ye, L.-Q., Li, Y.-P.: Hydrothermal synthesis of superparamagnetic Fe3O4 nanoparticles with ionic liquids as stabilizer. Mater. Res. Bull. 62, 217–221 (2015)CrossRefGoogle Scholar
- 43.Caruntu, D., Caruntu, G., O’Connor, C.J.: Magnetic properties of variable-sized Fe3O4 nanoparticles synthesized from non-aqueous homogeneous solutions of polyols. J. Phys. Appl. Phys. 40, 5801 (2007)ADSCrossRefGoogle Scholar
- 44.Tackett, R., Sudakar, C., Naik, R., Lawes, G., Rablau, C., Vaishnava, P.P.: Magnetic and optical response of tuning the magnetocrystalline anisotropy in Fe3O4 nanoparticle ferrofluids by Co doping. J. Magn. Magn. Mater. 320, 2755–2759 (2008)ADSCrossRefGoogle Scholar
- 45.Şimşek, T., Akansel, S., Özcan, Ş.: Effect of hexane on magnetic blocking behavior of FePt nanoparticles. J. Magn. Magn. Mater 324, 3924–3928 (2012)ADSCrossRefGoogle Scholar
- 46.Rumpf, K., Granitzer, P., Morales, P., Poelt, P., Reissner, M.: Variable blocking temperature of a porous silicon/Fe3O4 composite due to different interactions of the magnetic nanoparticles. Nanoscale Res. Lett. 7, 445 (2012)ADSCrossRefGoogle Scholar
- 47.Thakur, S., Rai, R., Sharma, S.: Structural characterization and magnetic study of NiFexO4 synthesized by co-precipitation method. Mater. Lett. 139, 368–372 (2015)CrossRefGoogle Scholar
- 48.Linh, P.H., Manh, D.H., Phong, P.T., Hong, L.V., Phuc, N.X.: Magnetic properties of Fe3O4 nanoparticles synthesized by coprecipitation method. J. Supercond. Nov. Magn. 27, 2111–2115 (2014)CrossRefGoogle Scholar
- 49.Gamarra, L.F., Pontuschka, W.M., Mamani, J.B., Cornejo, D.R., Oliveira, T.R., Vieira, E.D., Costa-Filho, A.J. Jr, Amaro, E.: Magnetic characterization by SQUID and FMR of a biocompatible ferrofluid based on Fe3O4. J. Phys. Condens. Matter. 21, 115104 (2009)ADSCrossRefGoogle Scholar
- 50.Carta, D., Casula, M.F., Falqui, A., Loche, D., Mountjoy, G., Sangregorio, C., Corrias, A.: A Structural and magnetic investigation of the inversion degree in ferrite nanocrystals MFe2O4 (M = Mn, Co, Ni). J. Phys. Chem. C 113, 8606–8615 (2009)CrossRefGoogle Scholar
- 51.López, J., González-Bahamón, L.F., Prado, J., Caicedo, J.C., Zambrano, G., Gómez, M.E., Esteve, J., Prieto, P.: Study of magnetic and structural properties of ferrofluids based on cobalt–zinc ferrite nanoparticles. J. Magn. Magn. Mater. 324, 394–402 (2012)ADSCrossRefGoogle Scholar
- 52.Dutta, P., Pal, S., Seehra, M.S., Shah, N., Huffman, G.P.: Size dependence of magnetic parameters and surface disorder in magnetite nanoparticles. J. Appl. Phys. 105, 07B501 (2009)Google Scholar
- 53.Li, M., Gu, H., Zhang, C.: Highly sensitive magnetite nano clusters for MR cell imaging. Nanoscale Res. Lett. 7, 204 (2012)ADSCrossRefGoogle Scholar
- 54.Goya, G.F., Berquó, T.S., Fonseca, F.C., Morales, M.P.: Static and dynamic magnetic properties of spherical magnetite nanoparticles. J. Appl. Phys. 94, 3520–3528 (2003)ADSCrossRefGoogle Scholar
- 55.Zélis, P.M., Pasquevich, G.A., Stewart, S.J., van Raap, M.B.F., Aphesteguy, J., Bruvera, I.J., Laborde, C., Pianciola, B., Jacobo, S., Sánchez, F.H.: Structural and magnetic study of zinc-doped magnetite nanoparticles and ferrofluids for hyperthermia applications. J. Phys. Appl. Phys. 46 (2013)Google Scholar