World Scientific

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.
BRIEF REPORTSNo Access

Small-Angle X-Ray Scattering Study on PVA/Fe3O4 Magnetic Hydrogels

A synchrotron small-angle X-ray scattering (SAXS) study on PVA/Fe3O4 magnetic hydrogels has been performed to investigate the effect of clustering on their magnetic properties. The hydrogels were prepared through freezing–thawing (F–T) processes. The structure, morphology and magnetic properties of magnetite (Fe3O4) nanoparticles (NPs) were investigated using X-ray diffractometry (XRD), transmission electron microscopy (TEM) and a superconducting quantum interference device (SQUID) magnetometer, respectively. In this study, SAXS data were used to reveal the structural dimensions of the magnetite and its distribution in the polymer-rich PVA and magnetic hydrogels. As calculated using the Beaucage and Teubner–Strey models, the average of the structural dimensions of the PVA hydrogels was 3.9nm (crystallites), while the average distance between crystallites was approximately 18nm. Further analysis by applying a two-lognormal distribution showed that the magnetite NPs comprised secondary particles with a diameter of 9.6nm that were structured by primary particles (3.2nm). A two-lognormal distribution function has also been used in describing the size distributions of magnetite NPs in magnetic hydrogels. The clusters of magnetite NPs in the magnetic hydrogels are significantly reduced from 30.4nm to 12.8nm with decreasing concentration of the NPs magnetite from 15wt.% to 1wt.%. The saturation magnetization values of the magnetite NPs, the 15% and 1% magnetic hydrogels were 34.67emu/g, 6.52emu/g and 0.37emu/g, respectively.

References

  • 1. E.-R. Kenawy, E. A. Kamoun, M. S. M. Eldin and M. A. El-Meligy, Arab. J. Chem. 7 (2014) 372. Crossref, ISIGoogle Scholar
  • 2. H. P. James, R. John, A. Alex and K. R. Anoop, Acta Pharm. Sin. B 4 (2014) 120. CrossrefGoogle Scholar
  • 3. Y. Osada, J. P. Gong and Y. Tanaka, J. Macromol. Sci. C 44 (2004) 87. CrossrefGoogle Scholar
  • 4. T.-Y. Liu, S.-H. Hu, K.-H. Liu, D.-M. Liu and S.-Y. Chen, J. Control. Release 126 (2008) 228. Crossref, ISIGoogle Scholar
  • 5. L. L. Lao and R. V. Ramanujan, J. Mater. Sci. Mater. Med. 15 (2004) 1061. Crossref, ISIGoogle Scholar
  • 6. P. An, F. Zuo, X. Li, Y. Wu, J. Zhang, Z. Zheng, X. Ding and Y. Peng, Nano 08 (2013) 1350061. Link, ISIGoogle Scholar
  • 7. Z. Varga, G. Filipcsei and M. Zrínyi, Polymer 47 (2006) 227. Crossref, ISIGoogle Scholar
  • 8. K. Y. Yoon, M. Mehrmohammadi, A. Borwankar, S. Y. Emelianov and K. P. Johnston, Nano 10 (2015) 1550073. Link, ISIGoogle Scholar
  • 9. N. Sahiner, S. Butun and P. Ilgin, Colloids Surf. Physicochem. Eng. Asp. 381 (2011) 74. Crossref, ISIGoogle Scholar
  • 10. W. H. Li, X. Z. Zhang and H. Du, Magnetorheological elastomers and their applications, Advances in Elastomers I, eds. P. M. VisakhS. ThomasA. K. ChandraA. P. Mathew Vol.11, (Springer, Berlin Heidelberg, 2013), pp. 357–374. CrossrefGoogle Scholar
  • 11. S. Sunaryono, A. Taufiq, M. Munaji, B. Indarto, T. Triwikantoro, M. Zainuri and D. Darminto, AIP Conf. Proc. 1555, (2013) 53. CrossrefGoogle Scholar
  • 12. R. V. Ramanujan and L. L. Lao, Smart Mater. Struct. 15 (2006) 952. Crossref, ISIGoogle Scholar
  • 13. P. J. Reséndiz-Hernández, O. S. Rodríguez-Fernández and L. A. García-Cerda, Synthesis of poly(vinyl alcohol)–magnetite ferrogel obtained by freezing–thawing technique, VIII Lat. Am. Workshop Magn. Magn. Mater. their Appl. Vol.320, July 2008 pp. e373–e376. Google Scholar
  • 14. J. Gonzalez, C. Hoppe, D. Muraca, F. Sánchez and V. Alvarez, Colloid Polym. Sci. 289 (2011) 1839. Crossref, ISIGoogle Scholar
  • 15. T. Puspitasari, K. M. L. Raja, D. S. Pangerteni, A. Patriati and E. G. R. Putra, Structural organization of poly(vinyl alcohol) hydrogels obtained by freezing/thawing and γ-irradiation processes: A small-angle neutron scattering (SANS) study, Int. Conf. Innov. Polym. Sci. Technol. Vol.4 (2012), pp. 186–193. Google Scholar
  • 16. L. E. Millon, M.-P. Nieh, J. L. Hutter and W. Wan, Macromolecules 40 (2007) 3655. Crossref, ISIGoogle Scholar
  • 17. R. Hernandez, J. Sacristan, A. Nogales, T. A. Ezquerra and C. Mijangos, Langmuir ACS J. Surf. Colloids 25 (2009) 13212. Crossref, ISIGoogle Scholar
  • 18. A. Priola, A. D. Gianni, R. Bongiovanni, S. G. Starodubtsev, S. S. Abramchuck, S. N. Polyakov, V. V. Volkov, E. V. Schtykova and K. A. Dembo, Eur. Polym. J. 46 (2010) 2105. Crossref, ISIGoogle Scholar
  • 19. O. Moscoso-Londono, J. S. Gonzalez, D. Muraca, C. E. Hoppe, V. A. Alvarez, A. Lopez-Quintela, L. M. Socolovsky and K. R. Pirota, Eur. Polym. J. 49 (2013) 279. Crossref, ISIGoogle Scholar
  • 20. R. Hernandez, J. Sacristan, A. Nogales, M. Fernandez, T. A. Ezquerra and C. Mijangos, Soft Matter 6 (2010) 3910. Crossref, ISIGoogle Scholar
  • 21. A. Taufiq, Sunaryono, E. R. Putra, A. Okazawa, I. Watanabe, N. Kojima, S. Pratapa and Darminto, J. Supercond. Nov. Magn. 28 (2015) 2855. Crossref, ISIGoogle Scholar
  • 22. S. Sunaryono, A. Taufiq, M. Mashuri, S. Pratapa, M. Zainuri, T. Triwikantoro and D. Darminto, Trans. Tech. Publ. Switz. 827 (2015) 229. Google Scholar
  • 23. A. Taufiq, S. Sunaryono, E. G. Rachman Putra, S. Pratapa and D. Darminto, Trans. Tech. Publ. Switz. 827 (2015) 213. Google Scholar
  • 24. Y. Zheng, S. Huang and L. Wang, Avestia Publ. I (2012) 124. Google Scholar
  • 25. S. Rugmai and S. Soontaranon, Manual for SAXS/WAXS data processing using SAXSIT (2013). Google Scholar
  • 26. J. Kohlbrecher, User guide for the SASfit software package, Paul Scherrer Institute Laboratory for Neutron Scattering (LNS) CH-5232 Villigen PSI [email protected] (2012). Google Scholar
  • 27. S. Pratapa, L. Susanti, Y. A. S. Insany, Z. Alfiati, B. Hartono, M. Mashuri, A. Taufiq, A. Fuad, T. Triwikantoro, M. A. Baqiya, S. Purwaningsih, E. Yahya and D. Darminto, AIP Conf. Proc. 1284, (2010) 125. CrossrefGoogle Scholar
  • 28. L. A. García-Cerda, M. U. Escareño-Castro and M. Salazar-Zertuche, Preparation and characterization of polyvinyl alcohol–cobalt ferrite nanocomposites, Non-Cryst. Solids 8 Proc. 8th Int. Workshop Non-Cryst. Solids Vol.353, April 2007, pp, 808–810. Google Scholar
  • 29. M. Teubner and R. Strey, J. Chem. Phys. 87 (1987) 3195. Crossref, ISIGoogle Scholar
  • 30. G. Beaucage, J. Appl. Crystallogr. 28 (1995) 717. Crossref, ISIGoogle Scholar
  • 31. R. Ricciardi, G. Mangiapia, F. Lo Celso, L. Paduano, R. Triolo, F. Auriemma, C. De Rosa and F. Lauprêtre, Chem. Mater. 17 (2005) 1183. Crossref, ISIGoogle Scholar
  • 32. C. M. Sorensen and G. M. Wang, Phys. Rev. E 60 (1999) 7143. Crossref, ISIGoogle Scholar
  • 33. M. F. van Raap, P. M. Zélis, D. Coral, T. Torres, C. Marquina, G. Goya and F. Sánchez, J. Nanopart. Res. 14 (2012) 1. ISIGoogle Scholar
  • 34. J. Teixeira, J. Appl. Crystallogr. 21 (1988) 781. Crossref, ISIGoogle Scholar
  • 35. S. M. Yusuf, M. D. Mukadam, J. M. De Teresa, M. R. Ibarra, J. Kohlbrecher, A. Heinemann and A. Wiedenmann, Phys. B Condens. Matter 405 (2010) 1202. Crossref, ISIGoogle Scholar
  • 36. M. Girod, S. Vogel, W. Szczerba and A. F. Thünemann, How temperature determines formation of maghemite nanoparticles, 10th Int. Conf. Sci. Clin. Appl. Magn. Carr. 10-14 June 2014 Dresd. Ger. Vol.380, April 2015, pp. 163–167. Google Scholar
  • 37. R. Rameshbabu, R. Ramesh, S. Kanagesan, A. Karthigeyan and S. Ponnusamy, J. Supercond. Nov. Magn. 27 (2014) 1499. Crossref, ISIGoogle Scholar
  • 38. K. S. Sivudu and K. Y. Rhee, Colloids Surf. Physicochem. Eng. Asp. 349 (2009) 29. Crossref, ISIGoogle Scholar
  • 39. P. Saravanan, S. Alam, L. D. Kandpal and G. N. Mathur, J. Mater. Sci. Lett. 21 (2002) 1135. CrossrefGoogle Scholar
  • 40. W. Cai and J. Wan, J. Colloid Interface Sci. 305 (2007) 366. Crossref, ISIGoogle Scholar
Published: 7 January 2016