SIMULATION AND PERFORMANCE ANALYSIS OF LITHIUM BATTERY BANK MOUNTED ON THE HYBRID POWER SYSTEM FOR MOBILE PUBLIC HEALTH CENTER
Mobile medical clinic has been proposed to serve homeless people, people in the disaster area or in the remote area where no health service exist. At that site, a number of essential services such as primary health care, general health screening, medical treatment and emergency/rescue operations are required. Such services usually requires on board electrical equipments such as refrigerators, komputer, power tools and medical equipments. To supply such electrical equipments, it needs extra auxiliary power sources, in addition of standard automotive power supply. The auxiliary power source specifically design to supply non automotive load which may have similar configuration, but usually uses high power alternator rated and larger deep cycle on board battery bank.
This study covers the modeling and dynamic simulation of auxiliary power source/battery to supply the medical equipment and other electrical equipments on board. It consists a variable speed diesel generator set, photovoltaic (PV) generator mounted on the roof of the car, a rechargable battery bank. As an initial step in the system design, a simulation study was performed. The simulation is conducted in the system level. Simulation results shows that dynamical behaviour by means of current density, voltage and power plot over a chosen time range, and functional behaviour such as charging and discharging characteristic of the battery bank can be obtained.
This work is partially supported by the Ministry of Research and Technology, Republic of Indonesia, through Incentive Research Program, Fiscal Year 2012.