
PERTEMUAN ILMIAH JABATAN FUNGSIONAL PRANATA NUKLIR, PENGAWAS RADIASI DAN TEKNISI LITKAYASA XIV

Jakarta, 9 Maret 2005

BADAN TENAGA NUKLIR NASIONAL PUSLITBANG TEKNOLOGI ISOTOP DAN RADIASI

Jl. Cinere Pasar Jumat Kotak Pos 7002 JKSKL Jakarta 12070 Telp. 021-7690709 Fax. 021-7691607; 7503270

KATA PENGANTAR

Sebagaimana Pertemuan Ilmiah ke XIV yang diselenggarakan selama 1 hari pada tangal 9 Maret 2005 oleh Puslitbang Teknologi Isotop dan Radiasi (P3TIR), Badan Tenaga Nuklir Nasional (BATAN) pada tahun ini bertujuan untuk tukar menukar informasi dan pengalaman sesuai dengan disiplin keilmuan masing-masing. Selain itu, pertemuan kali ini dimaksudkan juga untuk meningkatkan kemampuan para pejabat fungsional Pranata Nuklir, Litkayasa dan Pengawas Radiasi dalam pemecahan yang terjadi di dalam maupun diluar BATAN. Dengan demikian, ilmu dan teknologi yang dikembangkan dalam bidang ini dapat dimanfaatkan oleh pihak terkait dan masyarakat pada umumnya.

Pertemuan kali ini dihadiri oleh 158 orang peserta yang terdiri dari para pejabat fungsional Peneliti, pejabat fungsional Pranata Nuklir, dan Pengawas radiasi serta teknisi Litkayasa juga para peneliti terkait dan para Kepala Kelompok masing-masing di lingkungan P3TIR — BATAN dengan maksud agar dalam sessi diskusi lebih terarah dan memberi banyak masukan bagi para peserta sebagai patner kerjasama dalam membantu penelitian para peneliti di bidangnya. Jumlah makalah yang disajikan adalah sebanyak 44 buah makalah.

Penerbitan risalah pertemuan ini diharapkan dapat menambah sumber informasi dan perkembangan ilmu pengetahuan yang berkaitan dengan teknik nuklir bagi pihak yang membutuhkan untuk menunjang keberhasilan pembangunan dimasa mendatang serta mendapatkan sumber daya manusia yang handal di era globalisasi.

Penyunting

Penyunting

: Komisi Pembina Tenaga Fungsional Non Peneliti

- 1. Drs. Simon Petrus Guru Singa (Ketua)
- 2. Dr. Ir. Soeranto Human (Anggota)
- 3. Ir. Suharyono, M.Rur.Sci (Anggota)
- 4. Drs. Totti Tjiptosumirat, M.Rur.Sc. (Anggota)
- 5. Drs. Endrawanto, M.App.Sc (Anggota)
- 6. Drs. Erizal (Anggota)
- 7. Drs. Harwikarya, MT. (Anggota)
- 8. Dra. Fransisca A.E. Tethool (Anggota)
- 9. Drs. Syamsul Abbas Ras, M.Eng (Anggota)

PERTEMUAN JABATAN FUNGSIONAL PRANATA NUKLIR, TEKNISI LITKAYASA DAN PENGAWAS RADIASI XIV 2005 JAKARTA. Risalah pertemuan ilmiah jabatan Fungsional P. Nuklir, P. Radiasi dan T. Litkayasa XIV, Jakarta 9 Maret 2005/Penyunting Simon PGS (dkk) – Jakarta : Badan Tenaga Nuklir Nasional, Puslitbang teknologi Isotop dan Radiasi, 2005. 1 Jil. 30 cm.

No. ISBN 979-3558-05-9

Alamat

Puslitbang Teknologi Isotop dan radiasi

Jln. Cinere Pasar Jumat Kotak Pos 7002 JKSKL

Jakarta 12070 Telp. 021-7690709 Fax. 021-7691607

Email: p3tir@batan.go.id

and the entire selection of the selectio

DAFTAR ISI

KATA PENGANTAR
DAFTAR ISI
Laporan Ketua Panitia Pelaksana
Sambutan Deputi Bidang Penelitian Dasar dan Terapan
Tantangan Pembinaan Pejabat Fungsional Pranuk : Peningkatan ketrampilan dan keahlian SDM Dr. Asmedi Suripto
Peningkatan keterampilan dan keahlian SDM dalam menunjang aplikasi isotop dan radiasi yang berwawasan lingkungan Drs.Soekarno Suyudi
Uji adaptasi beberapa galur mutan kacang tanah terhadap pupuk npk dan bio-lestari dosis anjuran Parno dan Kumala Dewi
Meningkatkan produktivitas lahan sawah menggunakan nitrogen berasal dari pupuk kimia dan pupuk hijau Nana Sumarna
Analisis kandungan tanin dalam hijauan pakan ternak dengan metode total fenol Ibrahim Gobel
Penggunaan ³² P untuk menentukan pengaruh P dari dua sumber berbeda terhadap pertumbuhan tanaman jagung Halimah
Pengaruh infeksi fasciola gigantica terhadap gambaran darah sapi PO (peranakan ongole)
Yusneti dan Dinardi
Adaptasi dan toleransi beberapa genotipe kedelai mutan di lahan optimal dan lahan sub optimal Harry Is Mulyana
Pembuatan kurva standar isolat khamir R1 dan R2 Dinardi dan Yusneti
Pengujian daya hasil dan ketahanan terhadap hama dan penyakit galur mutan padi sawah obs 1677/Psj dan obs-1678/Psj Sutisna
Kurva pertumbuhan isolat khamir R1 dan R2 sebagai bahan probiotik ternak ruminansia. Nuniek Lelananingtyas
Perbedaan persentase n-berasal dari urea bertanda ¹⁵ N(% ¹⁵ N-U) pada kedelai berbintil wilis dan kedelai tidak berbintil CV Amrin Djawanas dan Ellya Refina

Pengaruh hormon testosteron alami terhadap kelangsungan hidup benih kan nila gift (Oreochromis niloticus). Sri Utami
Penggunaan pangkasan Flemingia congesta sebagai pupuk hijau bagi padi lahan kering Ellya Refina dan Amrin Djawanas
Perbedaan pertumbuhan berbagai bagian tanaman dan tanaman antara kedelai berbintil varietas Wilis dengan kedelai tidak berbintil varietas CV Karaliyani
Pengaruh iradiasi gamma ⁶⁰ Co terhadap pertumbuhan eksplan batang pada kultur <i>in-vitro</i> tanaman krisan (<i>chrysanthemum morifolium</i>) Yulidar
Penggantian tali pengendali sumber kobalt-60 iradiator panorama serbaguna (IRPASENA) Armanu, Rosmina DLT., R. Edy Mulyana, Bonang Sigit T., dan M. Natsir
Pembuatan petunjuk pengoperasian prototip renograf add-on card menggunakan perangkat lunak RENO2002 Joko Sumanto
Penentuan faktor keluaran berkas foton pesawat pemercepat linier medik elekta Nurman R
Teknik isotop dan hidrokimia untuk menentukan intrusi dan pola dinamika aliran air tanah di Kabupaten Pasuruan Djiono Wandowo, dan Alip
Rancangan prototip brakiterapi dosis rendah semi otomatis dengan isotop Ir-192 Tri Harjanto Djoko Trianto, Suntoro, Tri Mulyono Atmojo, dan Syamsurizal R,
Respon dosimeter larutan fricke dengan pelarut tridest, limbah air kondensasi, air bebas mineral dan millipure water serta penerapannya dalam layanan iradiasi gamma Tjahyono, Rosmina DLT, Darmono, Prayitno Suroso, Armanu dan M. Natsir
Perbandingan penentuan dosis serap berkas elektron energi nominal 9 MeV menggunakan protokol TRS No. 277 dan TRS No. 398 Sri Inang Sumaryati
Pengaruh dosis iradiasi terhadap berat molekul, kelarutan dan kekuatar tarik khitosan dari kulit udang Maradu sibarani dan Tony Siahaan
Studi casting nose piece abgasitutzen menggunakan X-Ray Djoli Sumbogo dan R. Hardjawidjaja

Renovasi motor listrik pada instalasi fume hood Wagiyanto
Studi filtrasi air melalui "cut off wall" menggunakan isotop I-131 pada bendungan Jatiluhur Pemurnian karbofuran dan karbaryl secara kristalisasi
Darman dan Hariyono
Identifikasi lokasi bocoran bendungan sengguruh dengan teknik perunut radioisotop AU-198 Alip, Djiono, dan Neneng Laksminingpuri R
Aplikasi gas larut dan tidak larut dalam panasbumi N. Laksminingpuri Ritonga, Djiono dan Alip
Studi kadar air jenuh dan higroskopis berbagai tipe tekstur tanah menggunakan neutron Simon Petrus Guru Singa
Analisis kemurnian radiokimia pada kit radiofarmaka mibi dan sediaan ¹⁵³ Sm-EDTMP Yayan Tahyan, Enny Lestari, Dadang Hafidz, dan Sri Setiyowati
Pemurnian karbofuran dan karbaril dengan metoda kristalisasi Elida Djakir
Penentuan partikel debu udara di PPTN Pasar Jumat Suripto dan Zulhema
Dosis minimum sinar gamma yang dapat diukur dosimeter poli(tetrafluoro etilen (TEFLON) dengan alat elektron spin resonan (ESR). A. Sudradjat dan Dewi S.P
Perbandingan metode pengabuan dan destruksi basah pada penentuan Pb, Cd, Cr, Zn dan Ni dalam tanaman air (Pistia stratiotes L) Desmawita Gani
Pengaruh penambahan antioksidan untuk pembentukan ikatan silang pada polietilen densitas rendah dengan teknik berkas elektron Dewi Sekar Pangerteni
Pengawasan NORM pada pelaksanaan program pemeliharaan Bejana Conoco Phillip Inc.Ltd di DPPA, Lapangan Belida, Laut Natuna Aang Suparman
Pengaruh dosis iradiasi terhadap berat molekul, kelarutan dan kekuatan tarik khitosan dari kulit udang Dian Iramani
Pengukuran pajanan radiasi gamma dan radioaktivitas lingkungan di pabrik pembuatan papan gypsum Wahyudi
Penentuan jumlah mikroba dan morfologi sel bakteri hasil isolasi dari tulang alograf Nani Suryani dan Febrida Anas

Pemantauan tingkat radioaktivitas air di lingkungan Pusat Penelitian Tenaga Nuklir Pasar Jumat periode Januari – Desember 2003 Prihatiningsih dan Aang Suparman	347
Penentuan dosis sterilisasi pada amnion chorion Febrida Anas dan Nani Suryani	355
Eliminasi mikroba serbuk chlorella dengan radiasi sinar gamma Lely Hardiningsih	364
Pemantauan tingkat radioaktivitas tanah dan rumput di lingkungan Pusat Penelitian Tenaga Nuklir Pasar Jumat periode tahun 2004	17
Achdiyat dan Aang Suparman	371
Daftar Peserta	379

PENGGUNAAN ³²P UNTUK MENENTUKAN PENGARUH P DARI DUA SUMBER BERBEDA TERHADAP PERTUMBUHAN TANAMAN JAGUNG

Halimah

Puslitbang Teknologi Isotop dan Radiasi - Batan

ABSTRAK

PENGGUNAAN ³²P UNTUK MENENTUKAN PENGARUH P DARI DUA SUMBER BERBEDA TERHADAP PERTUMBUHAN TANAMAN JAGUNG. Telah dilakukan suatu percobaan rumah kaca menggunakan jagung varitas Arjuna yang ditanam dalam kantong plastik yang berisi dengan 3 kg tanah kering udara yang berasal dari lahan kebun percobaan Pusat Penelitian Pengembangan Teknologi Isotop dan Radiasi (P3TIR-BATAN). Pada percobaan ini diterapkan metode ³²P menggunakan cairan bebas pengemban ion KH₂³²PO₄, sebanyak 30 ml per pot. Metode ³²P yang diterapkan adalah dengan cara diaduk (A) dan disiram (S) untuk menentukan ketersediaan P bagi tanaman yang berasal dari SP-36 atau Fosfat Alam (FA). Hasil percobaan antara lain menunjukkan bahwa ,³²P lebih banyak diencerkan bila diterapkan metode ³²P yang disiram dibandingkan metode ³²P yang diaduk. Dengan metode ³²P juga diperlihatkan bahwa, P-SP-36 lebih tersedia daripada P-FA. Hal yang sama ditunjukkan oleh interaksi metode ³²P x sumber P. Terlihat bahwa P-SP-36 akan lebih banyak tersedia bagi tanaman baik menggunakan metode ³²P yang diaduk maupun disiram dibanding FA. Tersedianya P-SP-36 yang lebih banyak dari pada P-FA akan menyebabkan pertumbuhan tanaman yang diberi SP-36 menjadi lebih baik daripada yang diberi FA.

ABSTRACT

THE USED OF 32P TO DETERMINE THE INFLUENCE OF P DERIVED FROM TWO DIFERENT SOURCES ON THE GROWTH OF CORN. A greenhouse experiment has been conducted using corn varietas Arjuna, planted in polybags filled with 3 kg air-dried soil taken from Experimental Station of Centre for Research and Development of Isotopes and Radiation Technology (P3TIR-BATAN). In this experiment the 32P method applied was the use of KH₂³²PO₄ carrier free solution. Each polybag was given 30 ml of ³²P solution. The ³²P methode was applied by mixing ³²P with the soil (A) and spread ³²P solution as equal as possible on the soil surface (S). The ³²P method was used to determine the availability of P derived from SP-36 and Phosphate rock (PR) to plants. The results of this experiment were as describe below. The 32P upplied was more diluted by the 32P spread on the soil surface (S) compared to the mixed (A). This was shown by the count per munite (cpm) of S method which was lower than that of A method. By the ³²P method it was also shown, that P derived from SP-36 was more available than that of P- derived from PR. For the interaction between the 32P method x P-source, it was shown, that P-SP-36 was more available whether using the ³²P-M or S ³²P method compared to P-PR. The fact that P-SP-36 was more available than P-PR for plant as shown by the better growth of plants applied with P-SP-36 compared to P-PR.

PENDAHULUAN

Kekahatan P merupakan salah satu faktor penghambat produksi tanaman pangan yang memadai bagi daerah tropis dan sub-tropis (1). Hal senada dikemukakan oleh SANTOSO (2) untuk lahan kering. Menurut dia (2) bahwa untuk Indonesia, bila ingin meluaskan lahan kering bagi tanaman pangan, yang paling utama harus dilakukan adalah meningkatkan kesuburan lahan dengan cara memupuk. Salah satu pupuk yang mutlak dibutuhkan adalah P.

Pupuk yang umum digunakan sejak tahun 60-an bersamaan dengan pupuk urea adalah TSP (3). Sejak 10 tahun belakanganTSP diganti SP-36, dengan perkiraan bahwa terutama untuk lahan sawah P sudah mencapai tingkat kejenuhan karena pemupukan TSP selama bertahun-tahun (3). Tetapi untuk lahan kering hal ini belum berlaku, dan menurut SOPYAN dkk (4) bila mengikuti rekomendasi 100, 75, atau 50 kg TSP/ha per musim, maka untuk SP-36 harus dikalikan koreksi sebesar 1,3.

Mengingat mahalnya pupuk TSP atau SP-36 yang membebani petani,maka salah satu cara untuk mengatasi, penggunaan TSP atau SP-36, dianjurkan adalah penggunaan fosfat alam (FA) secara langsung terutama untuk lahan kering bersifat masam. Penggunaan FA secara langsung akan jauh lebih menguntungkan dari sudut pandang biaya dibandingkan dengan TSP atau SP-36.

Tetapi FA yang langsung diberikan acapkali P-FAnya tidak atau belum tersedia bagi tanaman pada saat pertama kali diberikan . Justru P-residunya akan lebih tersedia bagi tanaman berikutnya. Untuk menguji apakah P-SP-36 atau P-FA lebih banyak dapat dimanfaatkan tanaman dapat digunakan metode ³²P.

Dalam makalah ini dilaporkan penggunaan metode ³²P untuk menguji ketersediaan P-berasal dari SP-36 dan FA pada tanaman jagung.

BAHAN DAN METODE

Bahan tanaman

Bahan tanaman yang digunakan adalah jagung varietas Arjuna, yang ditanam sebanyak 5 biji per pot. Pupuk dasar yang diberikan pada saat tanam adalah urea setara dengan 90 kgN/ha, KCl setara dengan 60 kg K₂O/ha, P sekali gus sebagai perlakuan adalah masing-masing untuk SP-36 dan FA setara dengan 60 kg P₂O₅/ha.

Tanah media tumbuh.

Tanah yang digunakan adalah tanah yang berasal dari lahan Kebun Percobaan Pusat Penelitian dan Pengembangan Teknologi Isotop dan Radiasi (P3TIR)-BATAN. Tanah ini adalah jenis tanah latosol dengan pH 5,4 (H₂O) dan 4,3 (KCl), kandungan C=1,25%, N = 0,14%, P₂O₅ (Olsen) 9 me/100 g.

Metode 32P.

Radioisotop yang digunakan pada metode ini adalah ³²P dalam bentuk cairan KH₂³²PO₄ bebas pengemban ion, dengan aktivitas awal 32,65 mCi/20 ml, yang kemudian diencerkan menjadi 1000 ml. Setiap pot menerima 30 ml ³²P dari larutan yang telah diencerkan.

³²P sebanyak 30ml/pot diberlakukan dengan 2 cara yaitu :

- diaduk (A) 30 ml ³²P diaduk secara merata dengan 3 kg tanah yang terisi ditiap pot.
- disiram (S) 30 ml ³²P disiram semerata mungkin diatas permukaan tanah pot.

Menurut ZAPATA and AXMANN (5) kedua cara diaduk dan disiram dapat digunakan untuk metode ³²P. Namun bila digunakan metode diaduk maka kemungkinan kontaminasi baik pada perkerja maupun tempat sekitarnya adalah jauh lebih besar daripada disiram.

Rancangan Percobaan. Rancangan Percobaan yang digunakan adalah Percobaan Faktorial menggunakan Rancangan Acak Kelompok dengan 5 ulangan seperti yang ditunjukkan oleh GOMEZ dan GOMEZ (6).

Perlakuan yang diterapkan adalah,

- I. Jenis pupuk: 1. Fosfat Alam (FA) setara dengan 60 kg P₂O₅/ha.
 - 2. SP-36 setara dengan 60 kg P₂O₅/ha
 - Tidak diberi FA atau SP-36, sebagai kontrol yaitu OP.
 OP ini dibutuhkan untuk dapat menentukan pengenceran ³²P oleh tanah, tanah + FA,tanah + SP 36.

OP yang merupakan kontrol untuk perlakuan FA dan SP-36, tidak diikutkan dalam diskusi.

- II. Metode ³²P: 1. ³²P diaduk dengan tanah didalam pot (A)
 - 2. ³²P disiram secara merata dipermukaan tanah dalam pot secara merata (S).
- : Panenan dilakukan 4 kali, yaitu 2, 3, 4, dan 5 minggu setelah biji ditanam .

 Pada saat panen diambil 1 tanaman per pot.

Parameter yang diamati:

- 1. Cacahan per menit pada tanaman .
- 2.Bobot kering tanaman
- 3. Persentase P-total (%P-total)
 - 4. Serapan P-total (mg P/tanaman)

HASIL DAN DISKUSI

Metode 32P.

Metode ³²P yang digunakan pada percobaan ini adalah metode tidak langsung dengan pengenceran. Untuk hal ini dibutuhkan satu standar dimana tanaman atau pot tidak diberi Pberasal dari SP-36 atau Fosfat alam (FA) yaitu dalam percobaan ini diistilahkan OP.

Kemudian semua tanaman, OP, SP-36 dan FA diberi 30 ml ³²P .Dasar daripada apakah metode ³²P dapat digunakan untuk menentukan berapa P-berasal dari SP-36 atau FA adalah berdasarkan cacahan per menit (cpm) .

Cpm merupakan gambaran dari kandungan ³²P didalam tanaman. Secara singkat dapat dikatakan bahwa bila cpm pada tanaman yang diberi FA atau SP-36 lebih rendah daripada tanaman yang tidak diberi P (OP), maka dapat dikatakan ³²P pada tanaman yang diberi SP-36 atau FA sudah terencerkan oleh P-berasal dari SP-36 atau FA. Dengan demikian dapat dikatakan bahwa tanaman sudah menyerap P-SP-36 atau P-FA.

Pada Tabel 1, terlihat bahwa ada perbedaan nyata (P<0,05) dan perbedaan sangat nyata (P<0,01) pada cpm yang ditransformasi antara ³²P yang diaduk (A) dan disiram (S), mulai dari panen I sampai dengan Panen IV.

Tampak bahwa pada cpm ditransformasi maupun asli, ³²P yang disiram (S) memperlihatkan nilai yang lebih rendah daripada nilai ³²P yang diaduk (A) dari mulai Panen I sampai dengan Panen IV. Ini menunjukkan bahwa ³²P yang disiram akan mampu mengencerkan P-SP-36 atau FA yang ditambahkan.

Melihat hal ini dapat dianjurkan untuk metode ³²P dengan pengenceran dapat dilakukan dengan disiram. Hal ini mempunyai keuntungan tambahan yaitu mengurangi kontaminasi bagi pekerja maupun lingkungan.

Untuk sumber P yang berasal dari FA atau SP-36, terlihat bahwa untuk FA baik cpm transfomasi maupun asli tampak nilainya lebih rendah daripada OP mulai Panen I sampai dengan Panen IV.

Sedangkan untuk SP-36 cpm transformasi maupun asli lebih rendah daripada OP pada Panen II dan Panen III. Sedangkan untuk cpm antara FA dan SP36 berbeda sangat nyata (P<0,01) mulai Panen I sampai dengan Panen IV. Walaupun untuk SP-36 pada Panen I dan Panen II cpm SP-36 lebih besar daripada OP dan pada FA sebaliknya, tetapi mungkin P-SP-36 sudah tersedia dan sudah dapat digunakan oleh tanaman walaupun ³²P nya belum dapat terencerkan secara banyak.

Tetapi pada Panen III dan Panen IV tampak bahwa cpm SP-36 lebih rendah daripada OP dan FA dengan urutan cpm SP-36 < cpm FA < cpm OP.

Ini berarti pada Panen III dan Panen IV ³²P sudah diencerkan oleh SP-36. Selain itu pada masa tersebut yaitu Panen III dan Panen IV cpm SP-36 < cpm FA.

Ini berarti bahwa ³²P lebih banyak diencerkan oleh P-SP-36 dibanding P-FA. Selanjutnya P-SP-36 sudah lebih banyak diserap daripada P-FA.

Data interaksi menunjukkan tidak adanya perbedaan antara interaksi metode ³²P x sumber P. (Tabel I). Selanjutnya dari Tabel 1 ini walaupun interaksi tidak nyata tetapi secara konsisten cpm transformasi atau pun asli menunjukkan bahwa interaksi ³²P yang diaduk dengan SP-36(A x SP-36) dan ³²P yang disiram dengan SP-36 (S x SP-36) selalu lebih tinggi daripada A x FA atau S x FA.

Ini menunjukkan bahwa baik SP-36 yang diukur dengan metode ³²P yang diaduk maupun disiram adalah selalu lebih tinggi ketersediannya bagi tanaman dibandingkan P-FA yang diukur dengan cara yang sama.

Dapat dikatakan bahwa dengan data yang dicantumkan pada Tabel 1 P-SP-36 terlihat lebih tersedia daripada P-FA. Selanjutnya apakah hal ini akan mempengaruhi pertumbuhan tanaman dicantumkan pada Tabel-tabel berikutnya.

Pertumbuhan tanaman.

Parameter pertumbuhan tanaman dinyatakan dalam bobot kering, persentase P-total (%P-total) dan serapan P-total, yang berturut-turut disajikan pada Tabel 2,3,dan 4. Pada metode ³²P yang diaduk (A) maupun yang disiram (S) telah diperlihatkan bahwa P-SP36

lebih banyak diserap daripada P-FA dan selanjutnya telah diamati bagaimana pengaruhnya terhadap pertumbuhan tanaman.

Pada Tabel 2 tampak bahwa metode ³²P diaduk maupun disiram tidak menunjukkan adanya perbedaan bobot kering pada semua Panen I sampai dengan Panen IV.

Walaupun tidak berbeda nyata,tetapi metode ³²P yang disiram menunjukkan bobot kering yang lebih berat daripada metode ³²P yang diaduk pada semua masa panen, kecuali Panen II.

Seperti telah dikemukakan pada pembahasan terdahulu pada metode ³²P yang disiram akan menyebabkan P-SP-36 dan P-FA menjadi lebih tersedia di banding ³²P yang diaduk. Ini mungkin yang menyebabkan mengapa bobot kering tanaman pada ³²P yang disiram lebih berat daripada ³²P yang diaduk.

Selanjutnya untuk P-SP-36 dan P-FA memang terlihat bahwa tanaman yang diberi SP-36 bobot keringnya lebih berat daripada yang diberi FA.

Ini sesuai dengan data metode ³²P yang menunjukkan bahwa P-SP-36 lebih tersedia daripada P-FA. Ini yang diduga mengapa tanaman yang menyerap P lebih banyak karena P yang tersedia lebih banyak (berasal dari SP-36) akan lebih berat daripada tanaman yang menyerap lebih rendah karena memang ketersediaan P yang lebih rendah (berasal dari FA).

Untuk interaksi metode ³²P x sumber P (A x FA, A x SP-36, S x FA, S x SP-36) terlihat tidak ada perbedaan nyata untuk semua panen. Disini pun terlihat bahwa baik metode ³²P yang diaduk (A) maupun yang disiram (S), maka yang bobotnya lebih berat adalah tanaman yang diberi SP-36 dibanding FA.

Mengapa hal ini terjadi penjelasannya sudah dijelaskan diatas, yang secara ringkas adalah bahwa P-SP-36 lebih tersedia daripada P-FA.

Pada Tabel 3, tercantum persentase P-total (%P-to). Untuk metode ³²P yang diaduk (A) maupun disiram (S) tidak menunjukkan adanya perbedaan pada semua masa panen. Namun %P-to tanaman yang diberi FA secara sangat nyata berbeda dengan tanaman yang diberi SP-36.

Selanjutnya %P-to tanaman yang diberi SP-36 menunjukkan nilai yang lebih tinggi daripada %P-to tanaman yang diberi FA pada Panen I sampai dengan Panen IV. Ini menunjukkan bahwa P-SP-36 lebih banyak diserap daripada P-FA.

Sedangkan untuk interaksi %P-to tampak tidak ada perbedaan nyata antara perlakuan pada semua panen. Namun secara konsisten %P-to tanaman, dimana interaksi antara metode ³²P dengan sumber-P,%P-to yang lebih tinggi ditunjukkan oleh SP-36 dengan kedua metode ³²P dibanding FA dengan metode ³²P yang sama (AxSP-36 > AxFA dan SxSP-36 > SxFA).

Seperti sudah dijelaskan sebelumnya , tampaknya P-SP-36 akan lebih tersedia daripada P-FA dengan metode ³²P yang diaduk maupun disiram. Ini selanjutnya menyebabkan tanaman yang diberi P-SP-36 mempunyai kesempatan menyerap P yang lebih banyak tersedia disbanding P-FA.

Serapan P-total disajikan pada Tabel 4. Serapan P-total merupakan hasil perkalian bobot kering x %P-total. Melihat hal ini tentu serapan P-total, akan sejalan dengan bobot kering dan %P-to.

Jelasnya bila bobot kering besar dan %P-to besar tentu serapan P-total besar, dan berlaku juga kebalikannya. Untuk metode ³²P diaduk (A) dan disiram (S) walaupun tidak nyata, maka sejalan dalam hal ini terutama bobot kering,maka metode ³²P yang disiram bobot keringnya lebih besar daripada metode ³²P diaduk (A) akan menunjukkan serapan P-total metode ³²P disiram (S) akan lebih besar daripada metode ³²P diaduk (A).

Pada sumber P, bobot kering maupun %P-to tanaman yang menerima SP-36 sangat nyata lebih serapan P nya tinggi daripada tanaman yang menerima FA.

Dengan demikian jelas serapan P-total tanaman yang diberi SP-36 akan lebih tinggi daripada tanaman yang menerima FA.

Untuk interaksi seperti bobot kering dan %P-to. Diperlihatkan lagi disini bahwa SP-36 yang berinteraksi dengan metode ³²P yang diaduk dan disiram akan menunjukkan nilai serapan P-total dari SP-36 lebih tinggi daripada FA. Sekali lagi dengan data ini dapat dikatakan bahwa P-SP-36 akan lebih banyak tersedia bagi tanaman untuk diserap dibanding P-FA.

KESIMPULAN

Beberapa kesimpulan yang dapat dikemukakan adalah antara lain,

- Metode ³²P dapat diterapkan dengan baik pada percobaan untuk menentukan P-yang tersedia dari berbagai sumber P.
- Metode ³²P dengan disiram ternyata dapat diencerkan oleh P-berasal dari SP-36 dan FA dengan lebih banyak daripada metode ³²P bila diaduk.
- Dengan menggunakan metode ³²P diperlihatkan bahwa P-berasal dari SP-36 lebih banyak tersedia daripada P-berasal dari FA untuk dapat digunakan tanaman.
- Dengan lebih tersedianya P-berasal dari SP-36 dibanding P-berasal dari FA, maka ini selanjutnya akan menyebabkan pertumbuhan tanaman yang lebih baik bila diberi SP-36 dibanding dengan FA.

UCAPAN TERIMAKASIH

Penulis mengucapkan terimakasih kepada Ibu Elsye L.Sisworo serta Peneliti di Kelompok Tanah dan Nutrisi Tanaman yang telah membimbing dalam pembuatan makalah ini.

DAFTAR PUSTAKA

- ZAPATA,F. and A.R. ZAHARAH. 2002 ,Phosphorus availability from phosphate rock and sludge as was influenced by the addition of water soluble phosphate fertilizer, Nutrient Cycling in Agrosystems 63, 43-48, (2002 Kluwer Academic Publishers, Printed in The Netherlands)
- SANTOSO, D. 1998, Development of phosphorus fertilizer used on acid soils in Indonesia, In: Nutrient Management for Sustainable crop Production in Asia (Eds A.E. Johntonand J.K.Syers) CAB International: 75-84
- 3. SRI ADININGSIH, J., AGUS SOFYAN, dan DEDI NURSYAMSI, LAHAN SAWAH DAN PENGELOLAANNYA (2000), Dalam: Sumber daya Penelitian Tanah dan Agroklimat, Badan Penelitian dan Pengembangan Pertanian, Departemen Pertanian,: 165-195.
- 4. SOFYAN, A. M SEDIYARSO, NURJAYA, dan J. SURYONO. Laporan akhir Penelitian status hara P dan K lahan sawah sebagai Dasar Penggunaan Pupuk yang Efisien pada Tanaman Pangan. Bag, Proyek Sumber Daya Lahan dan Agroklimat Puslit Tanah Bogor (Tidak Dipublikasi)
- 5. ZAPATA, F., and H. AXMANN (1985), Agromic evaluation of rock phosphate sources using radio isotop techniques, Isotope Dilution Technique, Experimental Guidelnes. Joint FAO/IAEA Programme, IAEA Laboratory A- 1444 Seibersdorf, Austria (1985) 1-2
- 6. GOMEZ, K.A. and A.A. GOMEZ (1984), Statistical Procedures for Agricultural Research. John Wiley and sons, Inc, Newyork Two Factor Experiments, 84-97.

HASIL DAN DISKUSI

Tabel 1. Cacahan per menit (cpm) dalam tanaman jagung yang diberi Fosfat Alam (FA) dan SP-36 bagi pengujian metode ³²P

Perlakuan	Panen I	Panen I		Panen II			Panen IV	
	Trans	Asli	Trans	Asli	Trans	Asli	Trans	Asli
Metode ³² P			cpm					
Aduk (A)	46,048	2309	88,748	8389	158,268	27499	214,234	48390
Siram (S)	32,655	1164	47,332	2432	119,224	15973	179,409	35103
Sumber-P		AYEA		ngto Jess	L12-70	1 1100	. 34%	
OP	32,625	1184	66,987	5342	168,116	30381	241,601	58740
FA	25,627	774	55,215	3345	142,955	22990	219,296	48958
SP-36	59,803	3262	81,919	7544	105,167	11838	129,561	17542
Interaksi					10000			
A x OP	39,357	1624	89,202	8635	176,173	33675	250,719	62952
AxFA	35,765	1285	69,525	4906	170,793	32366	245,955	60614
A x SP-36	63,023	4021	107,517	11626	127,837	16458	146,026	21603
S x OP	25,892	745	44,772	2049	160,058	27086	232,494	54528
SxFA	15,490	263	40,904	1784	115,116	13614	192,637	37302.
S x SP-36	56,582	2483	56,320	3463	82,497	7218	113 095	13481
F-hitung:	h jest ja		reded ago					
Metode ³² P	6,830 *		56,026**		5,937 *	h h	20,853 **	5
Sumber P	16,546**	n son i	7,800 **		5,213 **		80,640 **	
Interaksi	0,607 ^{tn}		1,461 tn		0,547 tn		1,780 tn	
KK (%)	35,67		22,71		31,63		10,61	

Keterangan:

- Semua nilai pada Tabel 1 berasal dari 5 ulangan
 - ** : sangat nyata berbeda pada P < 0.01
- in : tidak nyata berbeda
- Semua keterangan ini berlaku untuk Tabel 2, 3, 4.
- transformasi / trans data,yang digunakan adalah √cpm

Tabel 2. Bobot kering tanaman jagung yang diberi Fosfat Alam (FA) dan SP-36 bagi pengujian metode P³²

Perlakuan		Panen I		Panen II	7 144	Panen III		Panen IV	
Metode ³² P				g	l				
Aduk (A)		0,283		0,537		0,959		2,413	
Siram (S)		0,313		0,523	1)	1,013		2,623	
Sumber-P	l								
OP		0,297		0,418	į, į	0,665	1	1,824	
FA	į	0,218		0,350		0,670		1,959	
SP-36		0,379		0,822		1,624		3,772	
Interaksi									
A x OP		0,296		0,478		0,664		1,930	
AxFA		0,234		0,350		0,670		1,932	
A x SP-36	102.5	0,318		0,784		1,544		3,378	
S x OP		0,298		0,358		0,666		1,718	
SxFA	1	0,202		0,350		0,670		1,986	
S x SP-36	8 -	0,440		0,860		1,704		4,166	
F-hitung:									
Metode ³² P	\$1-a	1,311 ^{tn}	-0.00	0,188 ^{tn}	- []	0,259 ^{tn}	n ee e	0,309 tn	
Sumber P	po e	12,050 **	1,548	75,947 **		36,129 **	2 402 14	11,44 **	
Interaksi		3,042 tn		2,843 ^{tn}		0,250 ^{tn}		0,671 tn	
KK (%)	, the grade	24,61		17,47	Fo.	29,46		41,10	

Keterangan: - Semua nilai pada Tabel 1 berasal dari 5 ulangan

**: sangat nyata berbeda pada P <0.01

- tn: tidak nyata berbeda

- Semua keterangan ini berlaku untuk Tabel 2, 3, 4.

Tabel 3. Persentase P-total (%P-to) tanaman jagung yang diberi Fosfat Alam (FA) dan SP-36 bagi pengujian ³² P

Perlakuan	- 1	Panen I		Panen II		Panen III		Panen IV	
Metode ³² P				%					
Aduk (A)		0,183		0,141		0,255		0,263	
Siram (S)		0,184		0,138		0,251		0,254	
Sumber-P									
OP	-	0,146		0,110		0,260		0,268	
FA		0,161		0,105		0,223	211	0,230	
SP-36	Total Total	0,244	1.1	0,202		0,276		0,278	
Interaksi	1								
A x OP		0,146		0,114	7	0,207	10,127	0,255	
AxFA		0,165	İ	0,121	137	0,183	115	0,246	
A x SP-36	100	0,237	W.L	0,187		0,249		0,288	
S x OP		0,146	= Js	0,105		0,227		0,281	
SxFA		0,156	1 (0)	0,075	1	0,190	12 11 11	0,214	
S x SP-36		0,251		0,218		0,211	11.01	0,268	
F-hitung:									
Metode ³² P	154	0,045 tn		0,053 tn		0,022 ^{tn}		0,409 tn	
Sumber P	1	60,189**		21,420 **		1,408 tn	110	4,551 *	
Interaksi	nde	0,699 th		3,666 *		0,636 tn	1 14	1,705 ^{tn}	
KK (%)		11,74	4,1	26,91		28,41		14,36	

Keterangan: - Semua nilai pada Tabel 1 berasal dari 5 ulangan

- **: sangat nyata berbeda pada P <0.01

- tn : tidak nyata berbeda

- Semua keterangan ini berlaku untuk Tabel 2, 3, 4.

- * nyata berbeda pada P<0,05

Tabel 4. Serapan P-total (mg P) tanaman jagung yang diberi Fosfat Alam (FA) dan SP-36 bagi pengujian ³²P

Perlakuan	Panen I	Panen II	Panen III	Panen IV
Metode ³² P		mg P		
Aduk (A)	0,5116	0,7914	2,5207	6,3886
Siram (S)	0,5646	0,8512	3,0675	6,7380
Sumber-P				
OP	0,4145	0,4450	1,7635	4,8108
FA	0,3451	0.3760	1,5526	4,6364
SP-36	0,8548	1,6431	5,0663	10,2426
Interaksi	Cretto too		to the contract of	
A x OP	0,4031	0,5138	1,7344	4,9409
AxFA	0,3758	0,4338	1,4944	4,7237
A x SP-36	0,7561	1,4268	4,3334	9,5011
S x OP	0,4260	0,3761	1,7925	4,6807
SxFA	0,3144	0,3182	1,6108	4,5492
S x SP-36	0,9535	1,8593	5,7991	10,9842
F-hitung:				
Metode ³² P	0,997 tn	0,506 ^{tn}	1,074 tn	0,118 ^{tn}
Sumber P	36,204 **	95,839 **	18,693 **	13,142 **
Interaksi	2,064 ^{tn}	4,925 *	0,760 tn	0,312 tn
KK (%)	26,99	28,02	51,71	42,37

Keterangan: - Semua nilai pada Tabel 1 berasal dari 5 ulangan

**: sangat nyata berbeda pada P <0.01

tn: tidak nyata berbeda

- Semua keterangan ini berlaku untuk Tabel 2, 3, 4.

DISKUSI

SUGENG WALUYO

Bagaimana pengaruhnya apabila penambahan cairan mengemban ion yang ditambahkan lebih besar atau lebih kecil dari 30 ml perpot ?

HALIMAH

- Jika penambahan cairan $^{32}P < 30$ ml, maka aktivitas ^{32}P dalam tanaman kecil sehingga kurang akurat.
- Jika penambahan cairan ³²P > 30 ml, maka aktivitas ³²P yang diberikan kepada tanaman terlalu besar. Aktivitas ³²P yang terlalu besar dapat membuat pertumbuhan tanaman terganggu (injury).