EVALUASI UNJUK KERJA DETEKTOR FLUK NEUTRON JKT 02

Sukino, Koes Indra Koesuma, Djunaidi

ABSTRAK

EVALUASI UNJUK KERJA DETEKTOR FLUKS NEUTRON JKT 02. JKT 02 adalah system pengukuran fluks netron untuk daya menengah, sistem ini terdiri dari dua sistem redudansi yaitu CX 811 dan CX821. Detektor dari system pengukuran ini menggunakan tipe compasated Ionzation chamber (CIC) yang meliputi 7 dekade ring pengukuran. Tujuan dari evaluasi ini adalah untuk mendapatkan informasi tentang unjuk kerja detector JKT 02 setelah beroperasi lebih dari sepuluh tahun. Data yang mendukung untuk digunakan sebagai bahan evaluasi trediri dari resistansi isolasi kabel, tes tegangan tinggi dan resistansi isolasi detektor. Dari hasil evaluasi dapat disimpulkan bahwa terjadi penyimpangan sebesar 99 %pada pengukuan resistansi kabel dan detektor.

Kata kunci: Detektor JKT 02

ABSTRACT

THE EVALUATION PERFORMANCE OF NEUTRON FLUKS JKT 02 DETECTOR.

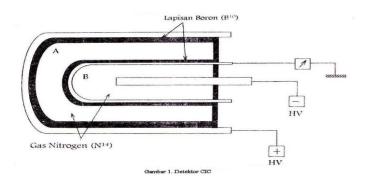
JKT02 is neutron flux measurement system for intermediate range, this system consist of two system (CX811, CX821) that form redundan system. The detector of this system using compensated ionization chamber (CIC) that covered 7 decade of measuring range. The purpose of evaluation is to get information about performance of JKT 02 detector after operation more then ten years. The data to evaluation consult of cable isolation resistance, high voltage test and measurement of detector isolation resistance. The result of the evaluation conclude that there are deviation about 99% at measurement of isolation cable resistance in and detector.

Key Wood: JKT 02 Detector

PENDAHULUAN

Detektor fluks neutron JKT 02 terletak disamping teras reactor berada di dalam kolam reactor. Sistem pengukuran fluks neutron ini untuk daya menengah, yang terdiri dari dua system CX 811 dan CX821 yang membentuk system redundansi. Kedua detektor dari system pengukuran menggunakan CIC yang meliputi 7 dekade ring pengukuran. Disekitar teras memiliki 3 (tiga) daerah pengukuran kerapatan fluks neutron yaitu : Daerah Start-Up, pada daerah ini menggunakan 2 (dua) buah detektor Fission Chamber (FC). Untuk menyangkup 6-7 dekade pengukuran, detektor dapat digerakkan pada 2 posisi pengukuran yaitu : 250 mm dan 750 mm di atas teras. Dengan pertimbangan untuk memperpanjang umur detektor pada operasi daya atau lebih besar 3% daya penuh, detektor ini ditarik ke posisi bebas neutron pada ketinggian 1,75 m dari teras. Perubahan posisi detektor dapat dilakukan secara otomatis maupun manual. Yang kedua daerah Intermediate, menggunakan 2 (dua) buah detektor CIC (Compensated Ionisation Chamber). Detektor ini mencakup 7 dekade pengukuran sampai ke daya penuh secara logaritmis. Detektor CIC dibuat dengan diameter 50 mm, panjang total 250 mm, daerah maksimal fluks 1.10¹² neutron cm⁻²s⁻ Yang ketiga daerah Daya, digunakan 4 (empat) buah detektor CIC yang mencakup 2 (dua) dekade pengukuran secara linier (0-160%) daya penuh. Penggunaan peralatan ini bersamaan dengan mulai beroperasinya reaktor dan akhir akhir ini penunjukannya satu dengan yang lain kadang kadang menyimpang sehingga perlu dilakukan evaluasi terhadap kinerja perangkat tersebut. Selanjutnya untuk meningkatkan keandalan dan kesiapan operasi RSG-GAS, perlu didukung oleh kesempurnaan fungsi semua instrumen reaktor, termasuk diantaranya kesempurnaan fungsi instrumentasi detektor fluks neutron JKT02 CX811 dan JKT02 CX821. Detektor CIC JKT02 CX811 dan

JKT02 CX821 yang mempunyai fungsi untuk memantau daya reaktor pada daerah menengah (*intermediate range*), menunjukkan kinerjanya kurang optimum dan tidak sesuai dengan yang diharapkan. Dari hasil evaluasi diharapkan diketahuinya penyebab terjadinya penyimpangan kinerja detektor.

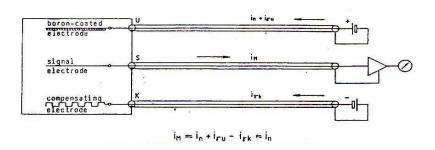

TEORI

Diskripsi Detektor Fluks Neutron JKT02

Pengukuran fluks neutron pada RSG-GAS di daerah intermediate menggunakan kanal de logaritmis (logaritmic de channel), karena dalam sistem pengukuran ini instrumen yang berperan adalah instrumen penguat dc logaritmis, yaitu instrumen yang memperkuat pulsa listrik yang masuk sebagai input dan menghasilkan output dalam bentuk hasil logaritmis penguatan inputnya. Kerapatan fluks neutron di daerah intermediate sudah semakin besar dan pengaruh sinar gamma sudah dapat dirasakan⁽²⁾. Karena itu digunakan detektor CIC vang dapat mengkompensasi sinar gamma sehingga tidak mempengaruhi pengukuran. Pada pengukuran di daerah intermediate digunakan arus ratarata, karena jumlah pulsa persatuan waktu sudah semakin rapat. Pada daerah intermediate ini digunakan 2 (dua) buah detektor CIC. Detektor ini mencakup 7 dekade pengukuran sampai ke daya penuh secara logaritmis, karena itu daerah pengukuran harus mencakup dari 5.10⁴ sampai 5.10¹¹ neutron cm⁻²s⁻¹. Kanal yang terdapat di daerah intermediate terdiri dari, JKT02 CX 811 (redundansi1) dan JKT02 CX 821 (redundansi 2). Redundan adalah merupakan sistem perangkat instrumentasi yang lebih dari 1 atau dobel untuk suatu tujuan pengukuran yang sama^{*}

Detektor CIC

Detektor jenis ini digunakan pada reaktor nuklir untuk pengukuran densitas fluks neutron thermal di daerah *intermediate* maupun di daerah daya. Detektor CIC terdiri atas ruang ionisasi A dan ruang ionisasi B. Dinding bagian dalam ruang A dan dinding bagian luar B dilapisi oleh Boron (B¹⁰). Diantara kedua ruang ionisasi tersebut diisi dengan gas Nitrogen (N¹⁴), seperti terlihat pada Gambar 1.


Gambar1. Detektor CIC

Detektor ini dibungkus oleh sebuah wadah berbentuk silinder yang terbuat dari alumunium murni dan tertutup rapat dan diisi dengan gas nitrogen bertekanan.

Elektroda terdalam merupakan elektroda kompensasi yang dikelilingi oleh elektroda sinyal. Pada ujungnya dilengkapi oleh celah udara (1 mm) yang berfungsi untuk membatasi pembesaran volume dan untuk mencegah ketidakhomogenan medan listriknya. Elektroda sinyal dikelilingi oleh elektroda tegangan. Pada elektroda tegangan ini, dinding terdalamnya mempunyai sebuah lapisan boron yang peka terhadap neutron.

Prinsip Kerja Detektor CIC

Bagian yang peka ke neutron dari sistem pengukuran dibentuk oleh sinyal elektroda dan mengelilingi elektroda tegangan. Thermal neutron memasuki sistem pengukuran yang diserap oleh kulit boron, diperkaya oleh 92 % B-10, pada dinding terdalam dari tegangan elektroda. Dalam sebuah proses nuklir, neutron diambil oleh B-10 yang menyebabkan pembentukan Li-7 dan melepaskan energi tinggi partikel α, seperti terlihat pada Gambar 2.

Gambar 2. Prinsip diagram

Reaksi yang terjadi adalah sebagai berikut:

1. Kamar A

a.
$$_{0}n^{1} + _{5}B^{10} \Rightarrow _{3}Li^{7} + _{2}\alpha^{4}$$
 $_{2}\alpha^{4} + _{7}N^{14} \Rightarrow _{10}Ne^{18} + _{-1}e^{0}$

b. $_{0}\gamma^{0} + _{7}N^{14} \Rightarrow _{-1}e^{0} + _{8}O^{14}$

2. Kamar B
 $_{0}\gamma^{0} + _{7}N^{14} \Rightarrow _{-1}e^{0} + _{8}O^{14}$

arus karena gamma (I_{γ})

arus karena gamma (I_{γ})

Kabel koaksial

Sebuah kabel yang disusun dari dua konduktor silinder koaksial dinamakan kabel koaksial, yang sering digunakan untuk mengirimkan sinyal elektromagnetik dari satu peralatan ke peralatan lain. Kabel koaksial merupakan kabel transmisi dengan konduktor dalam dan luar dipisahkan oleh udara atau bahan dielektrik. Kelebihan kabel koaksial ⁽⁵⁾ mempunyai karakteristik seragam, tanggap terhadap frekuensi tinggi, dan perisainya ditanahkan. Karakteristik impedansi dari kabel koaksial tidak bergantung pada panjangnya, tetapi hanya bergantung pada bentuk geometri konduktor dan bahan elektriknya.

Penguat DC logaritmis

Penguat ini berfungsi untuk memperkuat langsung pulsa dalam bentuk arus rata-rata yang berasal dari detektor CIC.

Tahanan isolasi

Tahanan isolasi dalam lingkaran arus listrik yang diberikan oleh lapis isolasi, tutup isolasi, bahan isolasi, atau dukungan isolasi pada voltasi tegangan, cenderung untuk menghasilkan bocoran arus lewat bendabenda yang sama tersebut. Dengan menguji tahanan ini dihasilkan cara untuk mengetahui tempat salah listrik dalam isolasinya.

Tahanan isolasi dipergunakan untuk mengukur tahanan isolasi dari alat-alat listrik maupun instalasi-instalasi. Maka sumber tegangan harus dipilih tidak hanya tergantung pada batas pengukuran, akan tetapi juga terhadap tegangan kerja dari peralatan ukur yang sedang diuji isolasinya. Pada umumnya isolasi yang dianggap cukup, untuk tegangantegangan rendah, akan tidak dapat bertahan, bila tahanan yang lebih besar dipergunakan untuk membangkitkan tegangan yang tetap, maka suatu pengatur kecepatan diperlengkapi di dalam sebuah pembangkitnya.

Lokasi dan peralatan yang dibutuhkan

Pengambilan data diukur di Balai Operasi, Sistem Proteksi Reaktor (ruang 0931 dan 0932) dan Ruang Kendali Utama.

Peralatan yang digunakan adalah:

- 1. Ohm meter untuk mengukur tahanan pada kabel koaksial.
- 2. Terra ohmmeter untuk mengukur tahanan isolasi pada kabel koaksial.
- Tester isolasi sebagai pengukur kebocoran arus.
- 4. Sumber neutron.
- Digital Voltmeter untuk mengukur sumber tegangan internal kabinet elektronik.
- 6. Detektor CIC

Jenis: KNK 52 (Hartmann dan Braun) Sensitifitas neutron thermal: 1. 10⁻¹⁵ Acm²s

Sensitifitas gamma : 1. 10^{-12} Acm²s (tanpakompensasi)

Jangkauan maks fluks neutron : 1. 10¹² Acm⁻²s⁻¹

Kompensasi: 98 %

Tegangan kamar: + 500 sampai 800 V (U) -10 sampai -500 V (K)

Temperatur maksimum : 120°C Tekanan maksimum : 5 bar

Jenis kabel: kabel koaksial keramik

- 7. Kabel sebagai penghubung antara peralatan yang satu dengan yang lain.
- 8. Modul-modul yang terdapat pada kabinet elektronik

Tes Kanal Pengukuran

Pada pengujian kanal pengukuran, digunakan simulator yang diberikan kenaikan tiap 1 (satu) dekade fluks neutron, hasilnya dibuat grafik. Pada grafik yang akan dibuat, angka yang diberikan oleh simulator berupa logaritma akan dibentuk menjadi bilangan linear, dengan rumus :

Y = log b⁻ⁿ dilinearkan menjadi Y = -n log b Sumbu y pada grafik merupakan hasil logaritma dari arus yang didapat, sedangkan pada sumbu x merupakan banyaknya data.

Terdapat pula faktor koreksi dengan menggunakan :

- Slope terbaik, merupakan gradien dari garis pada data terbanyak (garis terbaik).
- Slope maksimum, merupakan gradien dari titik yang mengalami penyimpangan, yang berada di atas garis terbaik.
- Slope minimum, merupakan gradien dari titik yang mengalami penyimpangan, yang berada di bawah garis terbaik.

• Rumus gradien = slope =
$$\frac{\Delta y}{\Delta x}$$

•
$$\triangle$$
 Slope = $\frac{\text{slope maksimum} - \text{slope minimum}}{2}$

■ Jangkauan = (slope terbaik $\pm \Delta$ Slope)

• Ralat nisbi =
$$\frac{\Delta \text{ slope}}{\text{slope terbaik}}$$

■ Keseksamaan = 100 % - Ralat nisbi.

TATA KERJA

Sistem pengukuran densitas fluks neutron di daerah *intermediate* merupakan suatu jaringan yang kompleks, dan dibutuhkan suatu keakuratan dari satu bagian ke bagian yang lain. Untuk itu diperlukan pengamatan dan pengukuran dalam proses unjuk kerja di daerah *intermediate*.

Unjuk kerja detektor fluks neutron dinyatakan dalam kemampuan operasi yang ditentukan berdasarkan prosedur yang ada. Dengan mengacu pada ketentuan yang disyaratkan dalam prosedur tes pengujian instrumen yang dikeluarkan oleh pemasok. Metode pengukurannya adalah sebagai berikut:

- * Pengukuran tahanan pada arus yang mengalir melalui kabel koaksial.
- Pengukuran tahanan isolasi isolasi dari kabel koaksial.
- * Pengujian penyedia tegangan internal kabinet elektronik.
- * Tes sumber tegangan tinggi detektor.
- Pengukuran tahanan isolasi dari kamar ionisasi neutron.
- * Mengecek arus nol dari kamar ionisasi.
- * Tes kanal pengukuran.

HASIL DAN PEMBAHASAN

Pengukuran pada kabel koaksial ini dimaksudkan untuk mengamati tahanan pada arus yang mengalir dari konektor dan kabel. Tahanan dari konduktor internal dan perisai dari kabel koaksial diukur dengan menggunakan ohm meter. Hasil pengukuran tahanan aliran arus pada kabel koaksial dapat dilihat pada Tabel 1.

Tabel 1. Pengukuran tahanan aliran arus pada kabel koaksial

Alat yang digunakan: ohm meter.

Kanal	Sinyal kabel, perisai	+HV kabel, perisai	HV kabel, perisai
Pengukuran	konduktor internal (Ω)	konduktor internal (Ω)	konduktor internal (Ω)
CX 811	2,1	2,1	2,1
CX 821	2,1	3,1	3,1

Tabel 2. Pengukuran tahanan isolasi dari kabel koaksial

Standar acuan $: 10^9 \Omega \dots 10^{13} \Omega$

Kanal	Sinyal kabel,	+HV kabel, perisai	HV kabel, perisai	
Pengukuran	konduktor internal (Ω)	konduktor internal (Ω)	konduktor internal (Ω)	
CX 811	9.10 ⁷	10^{8}	9.10 ⁷	
CX 821	8.10 ⁷	8.10 ⁷	8.10 ⁷	

Tabel 3. Sumber tegangan tinggi internal (kabinet elektronik)

SUM.TEG	HASIL		
SOM.TEG	CX 811	CX 821	
+20 V	+20,05 V	+20,26 V	
-20 V	-20,13 V	-20,32 V	
+10 V	11,09 V	11,68 V	

Tabel 4. Tes sumber tegangan detektor

	Disai	n	Hasil		
	HV(+)	HV(-)	HV(+)	HV(-)	
CX 811	+800	-300	+800	-300	
CX 821	+800	-300	+800	-300	

Tabel 5. Pengukuran tahanan isolasi dari kamar ionisasi neutron

Standar acuan : $> 5.10^{9} \Omega (S) ; > 5.10^{7} \Omega (U); > 5.10^{7} \Omega (K)$

Kanal	Plug penghubung	Plug penghubung	Plug penghubung"K",
Pengukuran	gukuran "S",Elektroda "U",Tegangan elektroda		elektroda kompensasi
	sinyal/perisai (Ω)	/perisai (Ω)	/perisai (Ω)
CX 811	5.10 ⁸	3,5.10 ⁸	3.10^{8}
CX 821	$2,2.10^8$	2,4.10 ⁸	$2,6.10^8$

Tabel 6. Tes kanal pengukuran JKT 02 CX 811

Uji (A)	CWA 02	CWL 02	CNE 01
10 ⁻¹¹	1,5.10 ⁻¹¹	10 ⁻¹⁰	10 ⁻¹¹
10 ⁻¹⁰	8.10 ⁻¹⁰	1,5.10 ⁻¹⁰	10 ⁻¹⁰
10-9	5.10-9	4.10 ⁻⁹	10 ⁻⁹
10-8	2,5.10 ⁻⁸	1,5.10 ⁻⁸	10 ⁻⁸
10-7	2.10-7	10 ⁻⁷	10 ⁻⁷
10 ⁻⁶	2.10 ⁻⁶	10 ⁻⁶	10 ⁻⁶
10 ⁻⁵	2.10 ⁻⁵	10 ⁻⁵	10 ⁻⁵
10-4	2.10-4	2.10^{-4}	10 ⁻⁴
10-3	10 ⁻³	10 ⁻³	10 ⁻³

NILAI BATAS

Signal	Posisi	Pengaturan	Hasil
+ HV max	CNE 01, DC33	+ 850 V	+ 847
+ HV min	CNE 01, DC33	+ 750 V	+ 753,5
- HV max	CNE 01, DC33	- 350 V	- 348
- HV min	CNE 01, DC33	- 250 V	- 250
LV 1	CNE 01, CC33	10 ⁻⁷ A	10 ⁻⁷ A
LV 2	CNE 01, CC33	10 ⁻⁷ A	10 ⁻⁶ A

JKT 02 CX 821

Uji (A)	CWA 03	CEF 01	CWL 02	CNE 01
10-11	1.10-11	1.10-11	8.10 ⁻¹¹	1.10 ⁻¹¹
10 ⁻¹⁰	8.10 ⁻¹⁰	1.10 ⁻¹⁰	1.10 ⁻¹⁰	1.10^{-10}
10-9	1.10-9	1.10-9	1.10-9	1.10 ⁻⁹
10-8	1.10-8	1.10-8	1.10-8	1.10 ⁻⁸
10-7	2.10-7	1.10-7	1.10-7	1.10 ⁻⁷
10 ⁻⁶	3.10 ⁻⁶	2.10 ⁻⁶	1.10 ⁻⁶	1.10 ⁻⁶

Bersambung

 1.10^{-3}

Uji (A)	CWA 03	CEF 01	CWL 02	CNE 01
10 ⁻⁵	1,5.10 ⁻⁵	1.10 ⁻⁵	1.10 ⁻⁵	1.10 ⁻⁵
10 ⁻⁴	$1,5.10^{-4}$	2.10^{-4}	2.10^{-4}	1.10 ⁻⁴

 1.10^{-3}

Lanjutan JKT 02 CX 821

 1.10^{-3}

NILAI BATAS

 10^{-3}

Signal	Posisi	Pengaturan	Hasil
+ HV max	CNE 01, DC33	+ 850 V	+ 843
+ HV min	CNE 01, DC33	+ 750 V	+ 762
- HV max	CNE 01, DC33	- 350 V	- 350
- HV min	CNE 01, DC33	- 250 V	- 259
LV 1	CNE 01, CC33	10 ⁻⁷ A	10 ⁻⁷ A
LV 2	CNE 01, CC33	10 ⁻⁷ A	10 ⁻⁷ A

Pembahasan

Pada pengukuran alat-alat ukur densitas fluks neutron menggunakan metode pembanding, yaitu membandingkan hasil pengukuran dengan standar yang diberikan oleh pemasok.

A. Pengukuran Instrumentasi

Pengujian alat pengukur di daerah Intermediate sebagian besar masih memenuhi standar seperti yang diberikan oleh pemasok (Interatom). Namun ada penyimpangan pada beberapa bagian yang terlihat. Adanya perbedaan yaitu pada tahanan isolasi dari kabel koaksial Tabel 2 dan tahanan isolasi dari kamar ionisasi neutron Tabel 5.

Tahanan isolasi dari kabel koaksial. Seharusnya hasil yang didapat terletak pada interval $10^9 \Omega$ sampai dengan. 10^{13} Ω. Pada kenyataannya pada masingmasing detektor (CX811 dan CX821) didapat pengukuran di bawah interval tersebut. Besarnya perbedaan tersebut adalah:

$$\frac{10^9 - 10^7}{10^9} X 100\% = 99\%$$

 1.10^{-3}

2. Tahanan isolasi dari kamar ionisasi neutron

Nilai standar dari tahanan isolasi dari kamar ionisasi neutron, adalah:

Elektroda sinyal (S) : $> 5.10^9 \Omega$ Elektroda tegangan (U) : $> 5. 10^7 \Omega$ Elektroda kompensasi (K) : $> 5.10^7 \Omega$ Pada elektroda S, baik detektor CX 811 dan CX 821 berada di bawah titik acuan. Sedang untuk elektroda tegangan (U) dan tegangan kompensasi (K) berada sesuai dengan standar yang ada.

Terjadi perbedaan nilai tahanan isolasi disebabkan:

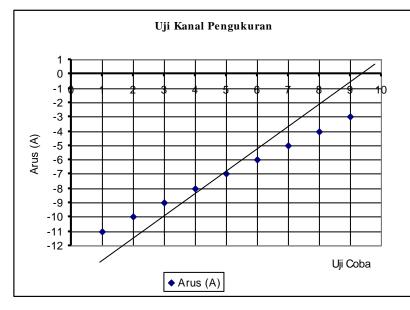
Pengaruh kelembaban, suatu bahan isolasi mempunyai sifat higroskopis, vaitu mempunyai kemampuan untuk menyerap air.

Sehingga tidak tertutup kemungkinan bahwa bahan isolasi pada kabel koaksial ini terkontaminasi oleh air yang berada di sekitar reaktor. Kadar uap air yang terserap ini dapat memperkecil daya isolasi bahan sehingga dapat menyebabkan berkurangnya daya kerja.

Pengaruh suhu, pada pengukuran fluks neutron di daerah intermediate ini, tidak tertutup kemungkinan terjadinya kenaikan suhu, yang berasal dari proses fisi yang terjadi di dalam reaktor. Suhu yang bertambah, akan mempengaruhi suhu pada kabel koaksial pula. Sehingga menyebabkan suhu dielektris akan naik maka kerugianpun juga akan terjadi. Jika kenaikan suhu yang terjadi lebih cepat dibandingkan dengan kemampuan dielektris menghancurkan panas, suhu pada dielektris akan secara cepat menjadi tinggi

Pengaruh umur dan perubahan, perlu juga diperhatikan akibat dari usia pakai ini terhadap arus bocor, karena keretakan yang terjadi makin lama akan makin parah dan kotoranpun akan menumpuk. Semakin banyak kotoran yang menumpuk maka akan mengurangi daya hantar listriknya.

B. Uji Kanal Pengukuran

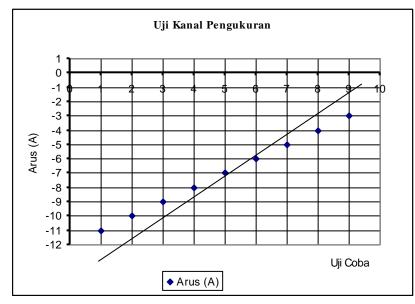

Pada uji kanal pengukuran (Tabel 6), angka yang diberikan oleh simulator setelah dilogaritmakan adalah :

No	Simulator	logaritma
1	1.10^{-11}	-11
2	1.10^{-10}	-10
3	1.10-9	-9
4	1.10 ⁻⁸	-8
5	1.10 ⁻⁷	-7
6	1.10^{-6}	-6
7	1.10 ⁻⁵	-5
8	1.10^{-4}	-4
9	1.10 ⁻³	-3

Detektor JKT 02 CX 811 .CNE 01

Pada kanal CNE 01 ini, tidak terjadi penyimpangan titik, sehingga CNE 01 ini tidak mengalami kerusakan. Untuk detektor JKT 02 CX 811 sebagian besar masih cukup baik, dengan melihat pada ralat nisbi yang diberikan dan penyimpangan titik terjauh berada pada setiap kanal. Terjadinya perbedaan tersebut akibat berkurangnya kemampuan baca instrumen tiap titik di masing-masing kanal, seperti terlihat pada Gambar 3.

CNE	1.10 ⁻¹¹	1.10 ⁻¹⁰	1.10 ⁻⁹	1.10 ⁻⁸	1.10 ⁻⁷	1.10 ⁻⁶	1.10 ⁻⁵	1.10 ⁻⁴	1.10 ⁻³
Log	-11	-10	-9	-8	-7	-6	-5	-4	-3


Slope terbaik = 1 Δ Slope = 0 Jangkauan =(1,00 \pm 0,00) Ralat Nisbi = 0 % Keseksamaan = 100 % ____ = Garis terbaik Tidak ada garis minimum dan maksimum

Gambar 3. Grafik Uji kanal terhadap fungsi arus untuk kanal JKT 02 CX 811 CNE 01

Detektor JKT 02 CX 821.CNE 01

.Pada kanal ini tidak terdapat penyimpangan dan masih relavan dengan standar yang ada.Bila diamati secara keseluruhan, perbedaan titik-titik pengukuran antara desain dengan modul-modul lain terletak pada titik yang berbeda, sehingga dapat dikatakan bahwa pengukuran fluks neutron untuk detektor JKT 02 CX 821 berada dalam kondisi yang baik, seperti terlihat pada gambar 4.

	CNE	1.10 ⁻¹¹	1.10 ⁻¹⁰	1.10-9	1.10 ⁻⁸	1.10 ⁻⁷	1.10 ⁻⁶	1.10 ⁻⁵	1.10-4	1.10 ⁻³
ſ	Log	-11	-10	-9	-8	-7	-6	-5	-4	-3

Slope terbaik = 1 Δ Slope = 0 Jangkauan =(1,00 \pm 0,00) Ralat Nisbi = 0 % Keseksamaan = 100 % ____ = Garis terbaik Tidak ada garis minimum

dan maksimum

Gambar 4. Grafik Uji kanal terhadap fungsi arus pada kanal JKT 02 CX 821 CNE 01

KESIMPULAN

Dari hasi-hasil pengukuran dan uji kanal serta pembahasan dapat disimpulkan bahwa hasil pengukuran yang dilakukan selama ini terdapat perbedaan dengan standar yang diberikan oleh pemasok sebesar 99%. Perbedaan ini mengharuskan adanya penggantian detektor JKT 02 CX 811 dan CX 821 sehingga pengukuran fluks neutron di daerah *intermediate* normal kembali.

DAFTAR PUSTAKA

- Safety Analysis Report, Vol2, Rev 6, Jakarta, Badan Tenaga Nuklir Nasional.
- 2. Buehla.D & Lachlan. MW., Applied Electronic Instrumentation & Measure-

- *ment.*, Collier Meamilan Canada. Inc, Toronto, 1992.
- 3. Gupta.JB., *A Text Book of Transmission and Distribution*, SS. Mubarok & Bruther, Tte, Ltd, Singapore.
- 4. Indrakoesuma. K., *Instrumentasi RSG-GAS.*, Bahan pengajaran Diklat keahlian dasar XIII-B, Serpong, 1997.
- 5. Knoll.G., Radiation Detection & Measurement, Second Eddition, John Wiley New York, Chiester, Brisbane, Toronto, Singapura, 1987.
- 6. Mennesmen, *Instrumen Manual.*, West Germany.
- 7. Pabla, *SistemDistribusi Daya Listrik*, Erlangga, Jakarta, 1991.