STUDI PERHITUNGAN REAKTOR HTR *PEBBLE-BED* DENGAN BERBAGAI OPSI DESAIN MATRIKS BAHAN BAKAR

Zuhair dan Suwoto

Pusat Teknologi Reaktor dan Keselamatan Nuklir – BATAN

ABSTRAK

STUDI PERHITUNGAN REAKTOR HTR PEBBLE-BED DENGAN BERBAGAI OPSI DESAIN MATRIKS BAHAN BAKAR. Teras HTR pebble-bed dapat mengakomodasi berbagai bahan bakar secara luas tanpa modifikasi desain teras yang signifikan. Dalam makalah ini dilakukan studi perhitungan reaktor HTR pebble-bed dengan tiga opsi desain matriks bahan bakar UO_2 (pengkayaan U^{235} 8,2%), PuO_2 (pengkayaan Pu^{239} 53,85%) dan ThO₂/UO₂ (pengkayaan U^{233} 7,47%). Perhitungan reaktor meliputi perhitungan sel menggunakan model array infinit bahan bakar pebble dengan kondisi batas reflektif dan perhitungan teras penuh memanfaatkan model silindris (2-D R-Z) dengan diameter 300 cm dan tinggi 943 cm. Seluruh perhitungan dilakukan dengan program transport Monte Carlo MCNP5 pada temperatur 293,6 K dan 1.000 K. Secara keseluruhan perhitungan MCNP5 menunjukkan konsistensi dengan nilai k_{inf} dan k_{eff} teras UO₂ yang hampir selalu lebih tinggi dibandingkan teras PuO₂ dan ThO₂/UO₂. Komparasi dengan simulasi Monte Carlo lainnya memperlihatkan bahwa MCNP5 memproduksi nilai k_{inf} sesuai dengan yang dihasilkan MCNP-4B dibandingkan MONK9 dengan bias perhitungan kurang dari 1,3%. Perhitungan keff MCNP5 merefleksikan kecenderungan dekat dengan MCNP-4B, KENO-V.a maupun MONK9 namun bias perhitungannya relatif lebih besar dibandingkan TRIPOLI4, khususnya di teras PuO₂. Dapat disimpulkan bahwa estimasi MCNP5 berada di dalam rentang prediksi seluruh program perhitungan Monte Carlo dan diekspektasi paling presisi bila data eksperimen didapatkan nanti.

Kata kunci: HTR pebble-bed, bahan bakar, MCNP5, ENDF/B-VI

ABSTRACT

STUDY ON PEBBLE-BED HTR REACTOR CALCULATION WITH SEVERAL OPTIONS OF FUEL MATRIX DESIGNS. Pebble-bed HTR core is able to accomodate various types of fuel without significant core modification. This paper presents study of calculation of pebble-bed HTR core with three options of fuel matrix designs: $UO_2 (8.2\% U^{235}$ enrichment), $PuO_2 (53.85\% Pu^{239}$ enrichment) and ThO_2/UO_2 $(7.47\% U^{233}$ enrichment). Core calculation includes cell calculation using infinite array model of pebble-bed fuel with reflective boundary and full core calculation uses cylindrical model (2-D R-Z) with 300 cm in diameter and 943 cm in height. All computations are carried out using Monte Carlo transport code MCNP5 at temperature of 293.6 K and 1000 K. In general, MCNP5 calculations indicate consistency with k_{inf} and k_{eff} values of UO_2 core which always almost higher than those of PuO_2 and ThO_2/UO_2 cores. Compared to the other Monte Carlo simulation show that MCNP5 produces the value of k_{inf} which is closer to that obtained by MCNP-4B than that obtained by MONK9 with the computation bias less than 1.3%. The MCNP5's k_{eff} calculation reflect a close tendency to that achieved by MCNP-4B, KENO-V.a, and MONK9, however, its computation bias is relatively high compared to the TRIPOLI4, especially for reactor core with PuO_2 . It can be concluded that MCNP5 estimations excist in the range of all Monte Carlo calculation codes and are expected to be the most precision if the experimental data found later.

Keywords: HTR pebble-bed, fuel, MCNP5, ENDF/B-VI

1. PENDAHULUAN

HTR (*high temperature reactor*) merupakan reaktor berpendingin gas temperatur tinggi, bermoderator grafit dengan spektrum neutron termal dan temperatur *outlet* teras hingga 1.000°C. Fasilitas energi ini dapat mencapai efisiensi termodinamika yang cukup tinggi (~ 80%) dengan kapabilitas generasi listrik dan produksi hidrogen. Sejumlah institusi riset di dunia dewasa ini sedang mengembangkan teknologi HTR melalui berbagai program seperti PUMA^[1], RAPHAEL^[2], ANTARES^[3], dan lain-lain. Tujuan dari program ini adalah untuk mengembangkan HTR tipe prismatik maupun tipe *pebble-bed*.

Konsep *pebble-bed* diusulkan pertama kali oleh Schulten di Jerman akhir tahun 1950-an yang mengawali sejarah HTR *pebble-bed* dengan dibangunnya AVR^[4] (*Arbeitsgemeinschaft Versuchs Reaktor*) sebagai HTR *pebble-bed* pertama di dunia. Sukses AVR disusul kemudian oleh THTR^[5] (*Thorium Hochstemparatur Reaktor*), HTR-MODUL^[6], HTR-10^[7] dan sejumlah perangkat kritik HTR *pebble-bed* seperti PROTEUS^[8], ACACIA^[9], ASTRA^[10], dan lain-lain.

HTR Teras pebble-bed dapat mengakomodasi berbagai bahan bakar secara luas tanpa modifikasi desain teras vang signifikan. Dalam makalah ini dilakukan studi perhitungan reaktor HTR pebble-bed dengan tiga opsi desain matriks bahan bakar UO₂ (pengkayaan U²³⁵ 8.2%), PuO₂ (pengkayaan Pu²³⁹ 53,85%) dan U233 ThO₂/UO₂ (pengkayaan 7.47%). Perhitungan reaktor meliputi perhitungan sel menggunakan model array infinit bahan bakar pebble dengan kondisi batas reflektif dan perhitungan teras penuh memanfaatkan model silindris (2-D R-Z) dengan diameter 300 cm dan tinggi 943 cm. Seluruh perhitungan dilakukan dengan program transport Monte Carlo MCNP5^[11] pada temperatur 293,6 K dan 1.000 K. Investigasi bias perhitungan sel dan perhitungan teras HTR *pebble-bed* dengan ketiga opsi desain matriks bahan bakar ini dan komparasi dengan simulasi Monte Carlo lainnya dilakukan untuk melengkapi analisis dengan memanfaatkan pustaka data tampang lintang neutron energi kontinu ENDF/B-VI^[12].

DESKRIPSI BAHAN BAKAR DAN TERAS HTR PEBBLE-BED

HTR *pebble-bed* dikarakterisasi oleh teras keramik penuh dan pendingin helium yang secara neutronik tidak aktif dan tidak korosif. Karena karakteristik ini HTR dapat dioperasikan pada temperatur yang tinggi dan sangat tinggi. HTR *pebblebed* menggunakan konsep bahan bakar partikel yang ditemukan di USA. Invensi partikel berlapis (*coated particles*) dengan kualitas yang sangat baik dari resistansi dan retensi produk fisi kemudian menjadi inovasi fundamental dalam bidang teknologi bahan bakar HTR. Partikel berlapis bahan bakar TRISO yang terdispersi dalam matriks grafit membuat HTR secara khusus berbeda dari tipe reaktor lainnya.

Partikel berlapis TRISO disusun oleh kernel UO2 dengan diameter 0,05 cm. Partikel berlapis TRISO lainnya dibentuk dari kernel PuO2 dan ThO2/UO2 dengan diameter vang sama, yakni 0,024 cm. Partikelpartikel ini dikelilingi oleh 4 lapisan yang terdiri atas lapisan penyangga karbon berpori (porous carbon buffer), lapisan piro karbon bagian dalam (inner pyrolitic carbon, IPyC), lapisan silikon karbida (SC) dan lapisan piro karbon bagian luar (outer pyrolitic carbon, OPyC), vang terdispersi dalam matrik grafit. Sebanyak 15.000 partikel berlapis membentuk bola berdiameter 5 cm yang dikelilingi oleh shell grafit dengan ketebalan 0,5 cm dalam sebuah bahan bakar pebble. Gambar 1 memperlihatkan skema geometrik bahan bakar HTR pebble-bed. Bahan bakar pebble dan partikel berlapis dengan kernel UO2, PuO2 dan ThO2/UO2 memiliki desain dan spesifikasi yang sama. Spesifikasi detailnya diberikan dalam Tabel 1.

Gambar 1. Skema geometrik bahan bakar HTR pebble-bed.

Spesifikasi danan dakar <i>peddle</i> :	
Diameter <i>pebble</i> (cm)	6,0
Radius zona bahan bakar (cm)	2,5
Ketebalan shell grafit (cm)	0,5
Densitas <i>shell</i> grafit (g/cm ³)	1,75
Impuritas boron alam dalam <i>shell</i> grafit (ppm)	0.5
Jumlah partikel berlanis per <i>pebble</i>	15,000
Massa baban bakar per <i>pebble</i> (α)	1 1201)
Wassa bahan bakar per pebble (g)	1,1291)
Fraksi <i>packing pebble</i> (%)	61
Spesifikasi partikel berlapis:	
Radius kernel bahan bakar (mm)	0,12 ²)
Densitas kernel bahan bakar (g/cm ³)	10,4
Impuritas boron alam dalam kernel (ppm)	1
Densitas matriks grafit (g/cm^3)	1,75
Impuritas boron alam dalam matriks grafit (ppm)	0,5
Material coating	C/C/SiC/C
Ketebalan coating (mm)	0,095 ³)/0,04/0,035/0,04
Densitas <i>coating</i> (g/cm ³)	1,05/1,9/3,18/1,9
Fraksi packing partikel berlapis (%)	3,45 ⁴)

Tabel 1. Spesifikasi bahan bakar pebble dan partikel berlapis.

¹⁾10,210 untuk massa bahan bakar UO₂, ²⁾0,25 untuk massa bahan bakar UO₂, ³⁾0,09 untuk ketebalan *coating* kernel UO₂, ⁴⁾9,043 untuk fraksi *packing* partikel berlapis UO₂.

Kernel UO₂ memiliki pengkayaan uranium ^{235}U / ($^{235}U+^{238}U$) sebesar 8,2 % sedangkan kernel ThO₂/UO₂ memiliki pengkayaan uranium ^{233}U / ($^{233}U+^{232}Th$) sebesar 7,48 %. Kernel PuO₂ memiliki vektor isotopik plutonium sebesar 2,59/ 53,85 / 23,66/ 13,13/6,77% yang berkorespondensi pada isotop plutonium ^{238}Pu / ^{239}Pu / ^{240}Pu / ^{241}Pu / ^{242}Pu .

Bahan bakar *pebble* ditempatkan dalam teras reaktor berdiameter 300 cm dan tinggi 943 cm. Teras HTR *pebble-bed* dimuati oleh ribuan bahan bakar *pebble* yang jumlahnya tergantung pada level daya dan desain reaktor yang dispesifikasikan. Manajemen bahan bakar HTR *pebble-bed* dimulai dengan memasukkan bahan bakar *pebble* ke dalam teras reaktor dari atas, dan mengeluarkan bahan bakar bekas yang telah digunakan dalam kurun waktu operasi reaktor dari bawah. Inspeksi untuk menentukan bahan bakar *pebble* yang belum mencapai *burn-up* yang diinginkan dilakukan untuk menempatkannya kembali ke dalam reaktor. Parameter reaktor dan spesifikasi teras HTR *pebble-bed* diberikan dalam Tabel 2.

Parameter reaktor:	
Daya (MW)	200
Volume teras (m ³)	66,657
Temperatur <i>inlet</i> teras (⁰ C)	400
Temperatur <i>outlet</i> teras (^o C)	950
Tekanan He (MPa)	4
Aliran massa pendingin (kg/s)	70,024
Densitas pendingin He pada 273,16K, 10 ⁵ Pa (g/cm ³)	1,78×10 ⁻⁴
Spesifikasi teras:	
Tinggi teras (m)	9,43
Radius teras (m)	1,5
Jumlah <i>pebble</i> per m ³	5.394
Jumlah <i>pebble</i> dalam teras	359.548
Fraksi <i>packing pebble</i> dalam teras (%)	61
Impuritas boron alam dalam struktur grafit (ppm)	2

Tabel 2. Parameter reaktor dan spesifikasi teras HTR pebble-bed.

2. MODEL PERHITUNGAN

Dalam perhitungan reaktor HTR *pebble-bed*, pemodelan partikel berlapis TRISO (pemodelan sel) dan pemodelan konfigurasi geometrik teras (pemodelan teras) memainkan peranan yang sangat penting untuk analisis neutronik seperti kritikalitas, reaktivitas, spektrum dan fluks neutron, distribusi spasial dari daya dan temperatur, deplesi dan *burn-up* bahan bakar, parameter kinetik, dan lain-lain.

Pemodelan sel

Dalam teras reaktor, bahan bakar *pebble* mempunyai fraksi *packing* 0,61. Dengan mempertahankan volume bahan bakar *pebble*

dalam sel kisi kubik didapatkan panjang sel satuan (pitch) 5,70218 cm, yang ternyata lebih kecil daripada diameter *pebble* (6 cm). Model sel kisi kubik ini tidak dapat digunakan kecuali jika nilai fraksi packing dikurangi. Pemodelan pebble sel yang dipertimbangkan kemudian adalah membuat sel kisi bola berupa sel kisi infinit dari bahan bakar pebble yang dikelilingi pendingin helium dengan ketebalan tertentu menggunakan kondisi batas reflektif. Dalam model ini, fraksi packing pebble 0,61 memberikan zona pendingin dengan radius 3,53735 cm atau diameter 7,0747 cm seperti diperlihatkan dalam Gambar 2.

Gambar 2. Model sel kisi bola bahan bakar pebble.

Gambar 3. Model sel kisi kubik partikel bahan bakar berlapis.

Untuk memodelkan bahan bakar *pebble* itu sendiri, zona bahan bakar *pebble* (radius 2,5 cm) dibagi ke dalam sel kisi kubik dimana di dalam setiap sel kisi kubik terdapat satu partikel berlapis di pusat kisi seperti diperlihatkan dalam Gambar 3. Partikel bahan bakar berlapis realitanya terdistribusi secara stokastik dalam bahan bakar *pebble*, namun dengan menghitung panjang sel kisi kubik (*pitch*) sebesar 0,1635 cm, konservasi dapat dilakukan untuk memperoleh 15.000 partikel berlapis dalam setiap bahan bakar *pebble*. Dari ukuran *pitch* ini dapat dibuktikan fraksi *packing* partikel berlapis untuk kernel UO₂ dan PuO₂, ThO₂/UO₂ masing-masing 9,043 %; 3,45% dan 3,45% yang didapatkan dari hubungan $(4\pi r^3/3)/p^3$, dimana r = 0,0455 cm atau 0,0330 cm, dan p (*pitch*) = 0,1635 cm.

Kernel	Nuklida	Densitas atom (atom/barn-cm)
UO ₂	238 _U	2,12877×10 ⁻²
	235 _U	1,92585×10 ⁻³
	0	4,64272×10 ⁻²
	10 _B	1,14694×10 ⁻⁷
	¹¹ B	4,64570×10 ⁻⁷
PuO ₂	238 _{Pu}	6,01178×10 ⁻⁴
	239 _{Pu}	1,24470×10 ⁻²
	240 _{Pu}	5,44599×10 ⁻³
	241 _{Pu}	3,00965×10 ⁻³
	242 _{Pu}	1,54539×10 ⁻³
	0	4,60983×10 ⁻²
	10 _B	1,14694×10 ⁻⁷
	¹¹ B	4,64570×10 ⁻⁷
ThO ₂ /UO ₂	232 _{Th}	2,19473×10 ⁻²
	233 _U	1,76668×10 ⁻³
	0	4,74279×10 ⁻²
	10 _B	1,14694×10 ⁻⁷
	¹¹ B	4,64570×10 ⁻⁷

Tabel 3. Densitas atom kernel bahan bakar.

Material	Nuklida	Densitas atom (atom/barn-cm)
Carbon buffer IPyC/OPyC SiC	C C Si	5,26449×10 ⁻² 9,52621×10 ⁻² 4,77240×10 ⁻²
Matrika grafit	C	4,77240×10 ⁻²
Maurks grant	$10_{\rm B}$ $11_{\rm B}$	8,77414×10 ⁻² 9,64977×10 ⁻⁹ 3,90864×10 ⁻⁸
<i>Shell</i> grafit	C 10 _B 11 _B	8,77414×10 ⁻² 9,64977×10 ⁻⁹ 3,90864×10 ⁻⁸
Pendingin He	³ He ⁴ He	3,71220×10 ⁻¹¹ 2,65156×10 ⁻⁵

Densitas atom kernel bahan bakar diberikan dalam Tabel 3 sedangkan densitas atom lapisan kernel, matriks bahan bakar dan *shell* grafit untuk

pebble serta pendingin He yang digunakan dalam perhitungan sel diberikan dalam Tabel 4.

Pemodelan teras

Teras HTR *pebble-bed* dengan diameter 300 cm dan tinggi 943 cm memuat 359.548 bahan bakar *pebble* yang tersebar secara acak. Sulit sekali mendeskripsikan secara pasti ciri atau karakteristik dari keacakan bahan bakar *pebble* di dalam teras reaktor. Karena itu model teras digenerasi dengan struktur berulang dari sel kisi bola dimana sel kisi bola diekspansi dan menempati keseluruhan volume teras.

Gambar 4. Model perhitungan teras 2-D R-Z.

Diagram skematik model perhitungan teras 2-D R-Z diperlihatkan dalam Gambar 4 dimana nomor material struktur diindikasikan untuk setiap *region.* Komposisi dan densitas atom material struktur teras diberikan dalam Tabel 5. Dalam perhitungan ini, efek absorpsi dari impuritas dispesifikasi dalam bentuk kandungan boron natural (ppm) yang ekivalen dengan massa. Nilai yang digunakan adalah tipikal untuk teras HTR *pebble-bed*.

No. Region	Material struktur	Nuklida	Densitas (g/cm ³)	Densitas atom (atom/barn-cm)
1	Reflektor 1	С	1,53901	7,72000×10 ⁻²
		$10_{\rm B}$		3,39617×10 ⁻⁸
		¹¹ B		1,37562×10 ⁻⁷
2	Void	⁴ He	-	1,00000×10 ⁻¹¹
3	Void + grafit	С	3.98707×10 ⁻²	2.00000×10 ⁻³
		10_{B}	2,20,00, 10	8 79837×10 ⁻¹⁰
		¹¹ B		3 56378×10 ⁻⁹
4	Reflektor 2	С	1,80016	9.03000×10 ⁻²
		10_{B}		3.97246×10 ⁻⁸
		¹¹ B		1 60905×10 ⁻⁷
5	Lapisan karbon di	С	1,70049	8.53000×10 ⁻³
	sekeliling sistem	10_{B}		3 75250×10 ⁻⁸
		¹¹ B		1 51995×10 ⁻⁷
6	Reflektor + kanal	С	1,39946	7.02000×10^{-2}
	pendingin	10_{B}		3.08823×10 ⁻⁸
		11_{B}		1,25089×10 ⁻⁷
7	Reflektor + batang	С	6 99731×10-1	3 51000×10 ⁻²
	kendali	10_{B}	0,99751710	1.54411×10 ⁻⁸
		11_{B}		6.25444×10 ⁻⁸
8	Reflektor 3	С	6 99731×10 ⁻¹	3 51000×10 ⁻²
		10_{B}	0,99751^10	1 54411×10-8
		11_{B}		6.25444×10 ⁻⁸
				0,23444^10

Tabel 5. Komposisi dan de	ensitas atom	material st	truktur	teras.
---------------------------	--------------	-------------	---------	--------

3. HASIL PERHITUNGAN DAN DISKUSI

Perhitungan sel dan teras dikerjakan berdasarkan prinsip keseimbangan neutron. Jumlah neutron dalam setiap generasi dihitung dan komparasi dibuat dengan jumlah neutron dalam generasi berikutnya. Jejak seluruh mekanisme yang memungkinkan neutron lahir dari reaksi fisi, hamburan dan tangkapan serta hilang karena absorpsi dan keluar dari sistem dicatat dan disimulasikan dengan teknik *sampling*. Faktor multiplikasi dihitung untuk setiap siklus yang diberikan. Setiap neutron fisi digenerasi secara acak dalam lokasi-lokasi dimana material fisil berada.

Sel kisi kubik dibentuk dengan model heterogen enam zona yang melukiskan partikel bahan bakar berlapis dan matriks grafit secara eksplisit. Sel kisi ini disebut *universe-1*. Sel kisi ini kemudian diekspansi dengan kondisi batas reflektif pada ke-enam bidang lateral membentuk sel kisi bola. Dalam perhitungan sel, model *array* infinit bahan bakar *pebble* dimanfaatkan dengan membuat *array* sel kisi bola menggunakan kondisi batas reflektif. Sel kisi bola disebut *universe-2. Universe-1* dan *universe-2* digenerasi oleh permukaanpermukaan yang didefinisikan dalam MCNP. Dalam perhitungan teras, model silindris (2-D R-Z) teras HTR *pebble-bed* dimanfaatkan dengan diameter 300 cm dan tinggi 943 cm yang dibentuk dari *array* sel kisi bola. Opsi LATTICE dan FILL digunakan tiga kali dalam perhitungan ini.

Seluruh perhitungan dilakukan dengan opsi tipikal KCODE dan KSRC pada temperatur 293,6 K dan 1000 K. Setiap siklus KCODE terdiri atas 1.000 neutron dimana jumlah eksaknya bervariasi dari siklus ke siklus, dimulai dari titik sumber fisi yang ditentukan dalam siklus sebelumnya. Hasil perhitungan didasarkan pada 1.000 siklus total dengan 10 siklus pertama di-*skip* sebelum *tally* dimulai untuk memastikan bahwa distribusi sumber sudah stabil. Sumber fisi awal diletakkan dalam pusat sel kisi kubik. Data hamburan termal $S(\alpha,\beta)$ dengan spesifikasi grph.01t diaplikasikan untuk memodelkan interaksi neutron dengan grafit pada energi di bawah ~4 eV. Kondisi batas vakum dikenakan pada semua permukaan luar sistem perangkat setelah memasukkan material dan sifatsifat lain seperti *importance* neutron ke dalam setiap sel yang didefinisikan.

Hasil perhitungan sel berupa faktor multiplikasi infinit (k_{inf}) dan teras berupa faktor multiplikasi efektif (k_{eff}) dengan MCNP5 dan komparasinya dengan simulasi Monte Carlo lainnya diperlihatkan dalam Tabel 6 dan 7. Dari Tabel 6 dapat diamati bahwa secara keseluruhan perhitungan MCNP5 dalam teras UO₂ menunjukkan konsistensi dengan nilai k_{inf} yang hampir selalu lebih tinggi dari teras PuO₂ maupun ThO₂/UO₂ dengan bias kurang dari 3,79%. Namun untuk temperatur 1.000 K, nilai k_{inf} teras UO₂ lebih rendah daripada k_{inf} teras ThO₂/UO₂. Hal ini diprediksi karena teras ThO₂/UO₂ memiliki reaktivitas temperatur yang jauh lebih kecil (-2,13×10⁻⁶ $\Delta k/k/^{\circ}$ C) dibandingkan teras lainnya dan cenderung positif seperti yang diestimasi oleh MONK9^[13].

Torog	Temperatur	Faktor multiplikasi infinit (kinf)			
Teras		MONK9	MCNP-4B	MCNP5	
UOa	293,6 K	$1,5364 \pm 0,0010$	1,5108	1,51957 ± 0,00039	
002	1000 K	$1,4476 \pm 0,0010$	-	$1,42962 \pm 0,00034$	
PuO2	293,6 K	$1,4805 \pm 0,0010$	1,4573	$1,46415 \pm 0,00042$	
	1000 K	$1,4068 \pm 0,0010$	-	$1,\!38848 \pm 0,\!00037$	
ThO ₂ /UO ₂	293,6 K	$1,4442 \pm 0,0005$	1,46841	$1,46486 \pm 0,00040$	
	1000 K	$1,4452 \pm 0,0005$	1,4573	$1,46164 \pm 0,00035$	

Tabel 6. Hasil perhitungan sel (k_{inf}) dengan MCNP5.

Komparasi dengan simulasi Monte Carlo lainnya seperti ditunjukkan dalam Tabel 6 memperlihatkan bahwa secara umum MCNP5 memproduksi nilai k_{inf} sesuai dengan yang dihasilkan MCNP-4B^[14] dibandingkan MONK9

dengan bias perhitungan kurang dari 1,3% walaupun MCNP-4B memanfaatkan model sel satuan heksagonal untuk mencapai fraksi *packing pebble* 61%.

	1					
Teras	Temperatur	Faktor multiplikasi efektif (<i>k</i> eff)				
Terus	remperatur	MONK9	TRIPOLI4	MCNP-4B	KENO-V.a	MCNP5
UO2	293,6 K	$1,3697 \pm 0,0010$	$1,38208 \pm 0,0005$	-	$1,36881 \pm 0,00048$	$1,36618 \\ \pm 0,00039$
	1000 K	$1,2863 \pm 0,0010$	$1,30557 \pm 0,0005$	-	$1,27599 \pm 0,00046$	$1,28751 \pm 0,00036$
PuO ₂	293,6 K	1,3494 ± 0,0010	$1,35714 \pm 0,0005$	1,35302	$1,36127 \pm 0,00050$	$1,34564 \pm 0,00043$
	1000 K	1,2998 ± 0,0010	1,31111 ± 0,0005	1,30577	$1,29879 \pm 0,0042$	$1,29289 \pm 0,00038$
ThO ₂ /UO	293,6 K	-	-	-	-	$1,35109 \pm 0,00037$
2	1000 K	-	-	-	-	$1,27087 \pm 0,0010$

Tabel 7. Hasil perhitungan teras (k_{eff}) dengan MCNP5.

Perhitungan MCNP5 dalam Tabel 7 juga menunjukkan konsistensi dengan nilai k_{eff} teras UO₂ yang hampir selalu lebih tinggi dibandingkan teras PuO₂ dan ThO₂/UO₂. Pada temperatur 1.000 K, teras PuO₂ tampak reaktif sehingga diperlukan investigasi lebih lanjut untuk mendapatkan alasan spesifik guna optimisasi desain teras dengan opsi matriks bahan bakar khusus ini.

Dari Tabel 7 dapat diobservasi pula bahwa perhitungan k_{eff} MCNP5 merefleksikan kecenderungan dekat dengan MCNP-4B, KENO-V.a^[15] maupun MONK9. Namun dibandingkan TRIPOLI4^[16] prediksi MCNP5 memperlihatkan bias perhitungan relatif lebih besar, khususnya di teras PuO₂.

4. KESIMPULAN

Studi perhitungan reaktor HTR *pebble-bed* dengan tiga opsi desain matriks bahan bakar, yakni UO₂, PuO₂ dan ThO₂/UO₂ telah dilakukan. Secara keseluruhan perhitungan MCNP5 menunjukkan konsistensi dengan nilai k_{inf} dan k_{eff} teras UO₂ yang hampir selalu lebih tinggi dibandingkan teras PuO₂ dan ThO₂/UO₂.

Komparasi dengan simulasi Monte Carlo lainnya memperlihatkan bahwa MCNP5 memproduksi nilai k_{inf} sesuai dengan yang dihasilkan MCNP-4B dibandingkan MONK9 dengan bias perhitungan kurang dari 1,3%. Perhitungan k_{eff} MCNP5 merefleksikan kecenderungan dekat dengan MCNP-4B, KENO-V.a maupun MONK9 namun bias perhitungannya relatif lebih besar dibandingkan TRIPOLI4, khususnya di teras PuO₂.

Dapat disimpulkan bahwa estimasi MCNP5 berada di dalam rentang prediksi seluruh program perhitungan Monte Carlo dan diekspektasi paling presisi bila data eksperimen didapatkan nanti.

UCAPAN TERIMAKASIH

Ucapan terimakasih kami sampaikan kepada Drs. Histori yang telah menyediakan tenaga, pikiran dan waktu tak sedikit untuk mengoreksi dan memberi saran perbaikan pada makalah ini.

DAFTAR PUSTAKA

 J.C. Kuijper, "PUMA – Plutonium and Minor Actinides Management in Thermal High-Temperature Reactors", Proceedings of the International Congress on Advances in Nuclear Power Plants, Nice France, May 13-18, 2007.

- V. Basini, et al., "High-Temperature Reactor Fuel Technology in RAPHAEL European Project", Proceedins of the 4-th International Topical Meeting on High Temperature Reactor Technology (HTR2008), Washington, D.C., USA, September 28 – October 1, 2008
- 3. ANTARES, "The AREVA HTR-VHTR Design" (www.areva.com)
- 4. R. BAEUMER, *et al.*, "AVR: Experimental High Temperature Reactor; 21 Years of Successful Operation for a Future Energy Technology", Association of German Engineers (VDI), The Society for Energy Technologies, VDI-Verlag GmbH, Duesseldorf, 1990
- "Das 300 MW Thorium-Hochtemperatur-Kernkraftwerk THTR", Atomwirtschaft, May 1971
- H. Reutler and G.H. Lohnert, "The Modular High-Temperature Reactor", Nuclear Technology, 62(22), July 1983
- G.H. Lohnert, "Topical Issue on China's HTR-10", Nuclear Engineering and Design, 218(1-3), 2002
- 8. B. Franck, *et al.*, "Criticality Calculations on Pebble-Bed HTR-PROTEUS Configurations as a validation for the Pseudo-Scattering Tracking Method Implemented in the Monte Carlo MORET Code", Proceedings of the International Conference on the Physics of Reactors (PHYSOR2008), Interlaken, Switzerland, September 14-19, 2008.
- D.F. Da Cruz, "ACACIA Indirect: A Small Scale Nuclear Plant for New Markets", Proceedings of the International Conference on High Temperature Reactors (HTR2002), Petten, Holland, April 22-24, 2002
- N.N. Ponomarev-Stepnoi, *et al.*, "Experiments on HTR Criticality Parameters at the ASTRA Facility of the Kurchatov Institute", Nuclear Engineering and Design, 222[2-3], 215-229, 2003
- F.B. BROWN, et al., "MCNP A General Monte Carlo N–Particle Transport Code, Version 5", LA-UR-03-1987, April 24, 2003
- J.S. HENDRICKS, S.C. FRANKLE, J.D. COURT, "ENDF/B-VI Data for MCNP", Los Alamos National Laboratory Report, LA-12891, 1994
- N.R. Smith, M.J. Armishaw, and A.J. Cooper, "Current Status and Future Direction of the MONK Software Package", Proceedings of International Conference on Nuclear Criticality Safety (ICNC2003), Tokai-mura, Japan, October 20-24, 2003

- J.F. Breimeister (Ed.), "MCNP A General Monte Carlo Code for Neutron and Photon Transport, Version 4B", Los Alamos National Laboratory, Los Alamos, NM, MCNP4B, 1997
- 15. S. Goluoglu, "Analysis of a Computational Benchmark for a High-Temperature Reactor Using SCALE", International Conference on Physics of Reactors (PHYSOR2006), Vancouver, Canada, September 2006
- 16. J.P. Both, Y. Pénéliau, "The Monte Carlo Code TRIPOLI-4 and Its First Benchmark Interpretation", International Conference on the Physics of Reactors (PHYSOR1996), Mito, Japan, September 1996

TANYA JAWAB