KARAKTERISASI FASILITAS IRADIASI DENGAN

SELEKTOR NEUTRON (CHOPPER) Cd Fe Al

Suroso

ABSTRAK

KARAKTERISASI FASILITAS IRADIASI DENGAN SELEKTOR NEUTRON (CHOPPER) Cd Fe Al. Telah dilakukan perhitungan dan pengukuran fluks neutron di fasilitas iradiasi pada berbagai tingkat energi. Fasilitas iradiasi yang dimaksud adalah fasilitas iradiasi topas dengan menggunakan Al Fe Cd sebagai selektor energi neutronnya. Fasilitas tersebut dipasang di posisi K-10 yang semula berisi reflektor Beryllium. Perhitungan dilakukan dengan menggunakan program WIMS untuk mendapatkan harga diffusi dan tampang lintangnya dan program BATAN-2 DIFF untuk mendapatkan harga fluks neutronnya. Hasil perhitungan diperoleh : fluks neutron thermal 7,23067 x 10⁻¹⁴ n/(cm² s), fluks neutron ephitermal 3,70816 x 10⁻¹⁴ n/(cm² s), fluks neutron cepat *range* energi 5 keV- 1 MeV sebesar 2,70841 x 10⁻¹⁴ n/(cm² s), fluks neutron cepat *range* energi 1 MeV - 10 MeV sebesar 1,42156 x 10⁻¹⁴ n/(cm² s), sedangkan pengukuran fluks neutron di fasilitas iradiasi topas tersebut dilakukan dengan menggunakan foil emas telanjang dan foil emas dibungkus dengan Cadmium. Hasil yang diperoleh fluks neutron cepat 7,625 x 10⁻¹⁰ n/(cm² s) dan fluks neutron thermal 7,700 x 10⁻¹⁰ n/(cm² s). Perbedaan hasil perhitungan dan pengukuran diperkirakan terjadi karena penggunaan asumsi pada perhitungan yang kurang tepat.

ABSTRACT

CHARACTERISATION OF IRADIATION FACILITY WITH NEUTRON SELECTOR Cd Fe Al. Calculation and measurement the neutron flux in the iradiation facility to verify range energy have been done. The iradiation facility i.e topaz iradiation facility used Al Fe Cd as neutron energy selector. The facility was positioned in the K-10 position replacing a Beryllium reflector. The Calculation used the WIMS code for to get diffusion, macroscopic cross section values and the BATAN-2 DIFF code to get the neutron flux value. The calculation results the neutron fluxes of : 7.23067 x 10¹⁴ n/(cm².s) thermal neutron flux, 3.70816 x 10¹⁴ n/(cm².s) epithermal neutron flux, 2.770841 x 10¹⁴ n/(cm².s) fast neutron flux (5keV-1 MeV) and 1.42156 x 10¹⁴ n/(cm².s) fast neutron flux (1 MeV - 10 MeV). The measurement results neutron fluxes of : 7.625 x 10¹⁰ n/(cm².s) fast neutron flux and 7.70 x 10¹⁰ n/(cm².s) thermal neutron flux. Therefore the difference between the neutron flux values from calculation and measurement was predicted as misassumtion in the calculation.

PENDAHULUAN

Dalam rangka pendayagunaan RSG-GAS di antaranya telah dirancang dan dibuat suatu fasilitas iradiasi yang akan digunakan untuk iradiasi topas atau material lain yang membutuhkan neutron dengan energi tinggi. Fasilitas dibuat dari bahan Aluminium untuk pengarah dan stringernya, sedangkan sebagai bahan selektor energi neutronnya dipilih material, mempunyai yang komposisi dominannya Aluminium, Cadmium. Molybdenum dan Ferun. Fasilitas iradia: tersebut dipasang di posisi K-10 yang sebelumnya diisi elemen reflektor Beryllium

Karakterisasi suatu fasilitas iradiasi mutlak diperlukan sebelum fasilitas tersebut digunakan untuk produksi. Karakterisasi yang dilakukan meliputi perhitungan dan pengukuran fluks neutron pada berbagai tingkat energi. dikerjakan melalui dua tahap. Perhitungan Tahap pertama menggunakan program WIMS untuk mendapatkan harga diffusi dan tampang makroskopiknya yang merupakan lintang masukan program BATAN-2 DIFF. Tahap kedua menghitung harga fluks pada fasilitas iradiasi untuk berbagai tingkat energi dengan DIFF. BATAN-2 menggunakan program Sedangkan pengukuran fluks neutron dilakukan dengan menggunakan foil emas yang diantaranya dibungkus dengan Cadmium.

FASILITAS IRADIASI TOPAS

Fasilitas iradiasi topas dengan selektor neutron berbentuk kapsul terbuat dari bahan Al Mg₂ dengan dimensi bagian luar 58 mm x 58 mm dan panjang aktif 477 mm, bagian dalam tempat lokasi topas berdimensi 29,6 mm x 31,6 mm dan panjang aktif sama dengan dimensi panjang bagian luar. Penyaring energi neutron terbuat dari plat *alloy* Cd, Fe, Al dan Mo yang mempunyai tebal 1,7 mm. Kapsul dapat dibuka

pada bagian bawahnya yang untuk memasukkan atau mengeluarkan topas. Bukaan berbentuk ulir yang tidak bisa dimasuki air. Kapsul dimasukkan ke dalam stringer yang mempunyai dimensi 80,5 mm x 76 mm. Iradiasi kapsul di dalam teras reaktor dilakukan dengan bantuan pengarah yang terbuat dari Al Mg₂ yang mempunyai diameter 76 mm. Fasilitas iradiasi dipasang di teras reaktor pada posisi K-10 yang sebelumnya diisi elemen Beryllium, hal ini dapat dilihat pada Gambar 1. Sedangkan kapsul yang digunakan untuk iradiasi dapat dilihat pada Gambar 2.

Gambar 2. Kapsul iradiasi topa

METODA PENGUKURAN

A. BAHAN

- 1. Keping emas
- 2. Pembungkus Cadmium
- 3. Topas
- B. ALAT

2.

1. Reaktor serbaguna GA. Siwabessy

- 3. Sistem pencacah spektroskopi gamma latar rendah (MCA) dengan detektor Hp-Ge
- C. PROSEDUR PENGUKURAN

Fasilitas iradiasi topas

- Sampel yang berupa foil emas ditimbang untuk mengetahui massanya, sebagian foil emas dibungkus dengan Cadmium.
- Foil emas yang sudah ditimbang ditempatkan pada suatu plat Aluminium, kemudian dimasukkan ke dalam kapsul yang telah diisi dengan topas.
- Kapsul dimasukkan ke posisi iradiasi K-10 melalui pengarah dalam kondisi reaktor beroperasi.
- Setelah tercapai waktunya, kapsul yang berisi topas dan foil emas, diangkat dari posisi iradiasi dan dimasukkan ke *hot-cell*.
- 5. Foil emas dikeluarkan dari kapsul dan dimonitor paparannya.
- Foil emas kemudian dicacah menggunakan sistem pencacah spektroskopi gamma latar rendah (MCA) dengan detektor Hp-Ge. Hasil pencacahan digunakan untuk menghitung harga fluks neutron.

METODA PERHITUNGAN

Perhitungan fluks neutron pada fasilitas iradiasi topas dilakukan dalam dua tahap. Tahap pertama menggunakan program WIMS yang menghitung harga diffusi D, tampang lintang absorpsi makroskopik Σ_a , tampang lintang

hamburan makroskopik Σ_s . Masukan program WIMS terdiri dari komposisi dan dimensi dari kapsul, *stringer*, pengarah dan pendingin. Tahap kedua menghitung fluks neutron pada berbagai tingkat energi dikerjakan dengan menggunakan program BATAN-2 DIFF yang masukan programnya diperoleh dari hasil perhitungan program WIMS. Asumsi-asumsi yang dipergunakan dalam perhitungan adalah sebagai berikut :

- Perhitungan dengan menggunakan model anulus dengan diameter ekivalen
- Perhitungan dilakukan untuk tiga kelompok energi yaitu, thermal, epithermal dan cepat.
- Perhitungan untuk kondisi teras TWC (*Typical Working Core*) teoritis

- Perhitungan dilakukan pada daya reaktor 25 MW

Posisi semua batang kendali dalam kondisi up

HASIL DAN PEMBAHASAN

Perhitungan harga fluks neutron pada fasilitas iradiasi topas dikeriakan dengan menggunakan program **BATAN-2** DIFF dengan masukan program berupa harga diffusi D, tampang lintang absorpsi ∑_a dan tampang hamburan \sum_{s} yang diperoleh dari lintang perhitungan dengan menggunakan program WIMS. Masukan program WIMS berupa data komposisi dan dimensi dari fasilitas iradiasi topas. Hasil perhitungan Program WIMS dapat dilihat pada lampiran. Sedangkan perhitungan fluks neutron dikerjakan untuk empat tingkat energi. Hasil perhitungan fluks neutron masingmasing adalah,

• Fluks neutron thermal = 7,23067 x 10^{14} n/(cm².s)

- Fluks neutron epithermal = 3,70816 x 10¹⁴ n/(cm².s)
- Fluks neutron cepat $(5 \text{keV} 1 \text{ MeV}) = 2,770841 \times 10^{14} \text{ n/(cm}^2 \text{ s})$
- Fluks neutron cepat (1 MeV 10 MeV) = $1,42156 \times 10^{14} \text{ n/(cm}^2\text{.s})$

Pengukuran fluks neutron dikerjakan dengan menggunakan foil emas telanjang dan foil emas yang dibungkus dengan Cadmium. Pengukuran fluks neutron dengan menggunakan foil emas yang dibungkus dengan Cadmium menunjukkan besarnya harga fluks neutron cepat, karena diasumsikan semua neutron thermal terserap oleh Cadmium. Hasil pengukuran diperoleh besarnya fluks neutron cepat 7,625 x 10^{10} n/(cm².s) dan fluks neutron thermal 7,70 x 10¹⁰ n/(cm².s). Dari hasil perhitungan dan pengukuran terlihat bahwa fluks neutron thermal masih relatif lebih besar dari pada fluks neutron cepat. Sedangkan hasil perhitungan menunjukkan perbedaan yang besar dibandingkan pengukuran, hal ini diperkirakan terjadi karena asumsi yang digunakan dalam perhitungan tentang posisi batang kendali yang dianggap up semua ini jelas tidak tepat, di samping kemungkinan kalibrasi daya reaktor yang mungkin perlu ditinjau ulang. Sehingga dalam prakteknya maka harga pengukuran fluks neutron lebih dapat dipercaya dibanding harga perhitungannya. Kesalahan dari perhitungan terhadap pengukuran relatif besar, perbedaannya berorde 10^4 . MAR - NEW

KESIMPULAN

Hasil karakterisasi fasilitas iradiasi topas yang meliputi perhitungan dan pengukuran fluks neutron dapat diambil kesimpulan sebagai berikut :

- Hasil perhitungan dengan menggunakan 1 program WIMS untuk mendapatkan harga diffusi, tampang lintang absorpsi makroskopis dan tampang lintang hamburan makroskopis yang kemudian digunakan untuk menghitung fluks neutron dengan menggunakan program BATAN-2DIFF, diperoleh harga fluks neutron pada posisi di tengah-tengah kapsul iradiasi untuk berbagai tingkat energi sebagai berikut :
 - Fluks neutron thermal = 7,23067 x 10^{14} n/(cm².s)
 - Fluks neutron epithermal = 3,70816 x $10^{14} \text{ n/(cm}^2.\text{s})$
 - Fluks neutron cepat (5keV-1 MeV) = 2,770841 x 10¹⁴ n/(cm².s)
 - Fluks neutron cepat (1 MeV 10 MeV)
 = 1,42156 x 10¹⁴ n/(cm².s)
- 2. Hasil pengukuran diperoleh besarnya fluks neutron cepat 7,625 x 10^{10} n/(cm².s) dan fluks neutron thermal 7,70 x 10^{10} n/(cm².s).
- 3. Perbedaan antara hasil pengukuran fluks neutron terhadap perhitungan berorde 10⁴, perbedaan ini diperkirakan terjadi karena asumsi yang digunakan dalam perhitungan untuk posisi batang kendali *up* semua, di samping harga kalibrasi dayanya yang harus ditinjau lagi, sehingga dalam prakteknya maka hasil pengukuran yang digunakan.

DAFTAR PUSTAKA

1 Suroso dkk., Teknologi Pemuliaan Topas Dengan Metoda Iradiasi Neutron, Prosiding Panel Diskusi dan Poster Ilmiah, Pekan Ilmu Pengetahuan dan Teknologi 1995, Puspiptek, Serpong, 1995

- Endiah P.H., As Natio L., Suroso, Analisis Keselamatan Teras RSG-GAS Dengan Adanya Penyisipan Stringer Topaz, Prosiding Seminar Teknologi Dan Keselamatan PLTN Serta Fasilitas Nuklir ke Empat, Jakarta, 1996
- 3. Badan Tenaga Atom Nasional, Safety Analysis Report, September, 1989
- 4. Taubman, C. J., *The Wims 69-group Library Tape 199259*, United Kingdom Atomic Energy Authority, England, 1976
- 5 Lamarsh, John R., Introduction To Nuclear Engineering, Addison- Wesley Publishing Company, Inc., Canada, 1983

PERTANYAAN

Penanya

Alfahari Mardi

Pertanyaan :

- 1. Apa yang ingin dicapai dengan memasang paduan CdAlFe pada kapsul iradiasi?
- 2. Dari hasil perhitungan maupun eksperimen tampak bahwa pemasangan selektor ini kurang efektip. Mohon komentar Saudara.

LAMPIRAN

MASUKAN PROGRAM WIMS

CELL		6		_	-
SEQUENCE		1			
NGROUPS		4			
NMESH		31		, w	
NREGION		8			
NMATERIA		8	1		
PREOUT					
INITIATE					
ANNULUS	1	1.551521	1	*	TOPAZ + VOID 27.5 X 27.5
ANNULUS	2	2.313177	2	*	Al + Cd + FE + Mo
ANNULUS	3	2.538853	3 3	*	Al 2MM+ VOID 27.5 X 27.5
ANNULUS	4	3.300000) 4	*	Pendingin dalam pengarah
ANNULUS	5	3.500000) 5	*	Pipa pengarah
ANNULUS	6	4.13208	76	*	Air pendingin
ANNULUS	7	4.412958	37	*	Stringer Al Mg ₂
ANNULUS	8	4.458562	28	*	Air pendingin

Jawaban :

- 1. Yang diharapkan dengan memasang paduan CdAlFe agar netron termal terserap oleh material tersebut, sehingga fluks netron cepat yang berguna dalam iradiasi dapat lolos.
- 2. Hasil tesebut sangat efektip, karena kalau tidak dipasang material CdAlFe, bagian fluks netron termal dapat mencapai lima kali lipat harga yang sekarang.

Penanya Saiful Sujalmo

Pertaanyaan :

Dari kesimpulan penelitian ini terlihat perbedaan yang sangat "signifikan" antara hasil perhitungan yaitu untuk fluks cepat orde 10^{14} n/cm²det, sedangkan hasil eksperimen yaitu orde 10^{10} n/cm²det, hasil yang mana yang saudara ambil untuk perhitungan lama iradiasi serta target? Bila hasilnya seperti tersebut di atas?

Jawaban :

Hasil perhitungan dengan pengukuran perbedaannya sangat signifikan disebabkan oleh asumsi perhitungan yang menggunakan posisi batang kendali up semua, jelas, hasil pengukuran yang kami ambil.

Material 1	1.75	293.16	1	S							
	27	29.63	891	S							
	16	43.94	204	s							
20	0.55	367	ŝ								
	10.43	623	ŝ								
	15 42	015	ŝ								
2	10.42	10	ۍ د								
	1.0E-	10	3 6								
22	1.06-	10	3								
<i></i>	39.1	1.UL-	IV								
* Al Cd Fa	& Ma										
Matarial 7	3 26	120 1	k	£							
	3.30 17	239.1	0 <u>1</u>	3							
	03.3	0	3								
	4.5	0	3								
1	95 12	10.2	U ~	5							
1.	8.6	5	\$								
	53	8.9	6								
* 4100 5 0/											
" Al 99.5 %	0.7	202.10	•	~							
Material 3	2.7	293.16	3	5							
	27	99.12		\$							
	63	0.06		S							
	29	0.30		\$							
	56	0.40									
* Air Pendin	gin										
	4 0.00	0004	haar		• •						
MATERIAL	4 0.99	8204 2	93.16		35						
	2001		11.11		5						
	16		88.88	8889							
MAIERIAL MATERIAL	, 5 = 3	200	B.:								
	, 0 = 4		ж.								
* Al Ma											
MATEDIAI	7 766	20	2 16	2	¢						
	20	45	5.10 10	3	3 6						
	1056	-	0.50		3						
	1050		0.30		3						
	03 55		0.13		2						
	55 52		0.30		2						
	52		0.15		\$						
	27		16.45	-	S						
MATERIAL	/ 8 0.9982	204 2	93.16	3	\$						
	2001		11.11	1111	\$						
	16		88.88	8889							
•											
	·										
MESH 8 7	2424	22	<i>0</i>								
FEWGROU	PS 5 15 4	45 69		-							
* CHAIN N	0.123	3 4 5	67	8 9	9 10	11	12	13	14	15	16
SUPPRES	1 1 1	111	0 1	1 1	l 1	1	0	0	0	1	1
*POWERC	100	D 1	1								
BEGINC		100									
THERMAL	1										
* PUNCH	1										
LEAKAGE	8										
* BUCKLIN	G 1.7641	E-0 3 1.	76400) E-0 .	3						
BEGINC											

HASIL PERHITUNGAN PROGRAM WIMS

NUMERO DE GROUPS 4

2.67234E+00 1.14645E+00 9.23694E-01 2.48937E-01 9.32754E-15 6.25396E-15 7.16585E-14 3.35610E-14 4.60155E-04 1.72195E-04 8.20653E-03 8.04238E-02 6.63454E-02 5.76301E-02 2.98864E-04 0.00000E+00 0.00000E+00 2.22093E-01 6.84813E-02 6.64140E-06 0.00000E+00 0.00000E+00 2.83306E-01 6.93574E-02 0.00000E+00 0.00000E+00 3.65488E-04 1.25824E-06

LEAKAGE EDIT NOG = 4 K-INF Y K-EFF 0.00000 0.00000

2.67234E+002.67234E+004.60155E-049.32754E-151.27640E+011.14645E-011.14645E-011.72195E-046.25396E-151.44212E+019.23994E-019.23994E-018.20653E-037.16585E-141.44212E+012.48937E-012.48937E-018.04238E-023.35610E-141.10204E+01