Published Online: April 2018
AIP Conference Proceedings 1945, 020051 (2018); https://doi.org/10.1063/1.5030273
HQ 805 is known as a super strength alloys steel and widely applied in military equipment and, aircraft components, drilling device and so on. It is due to its excellent behavior in wear, fatigue, high temperature and high speed operating conditions. The weakness of this material is the vulnerablality to corrosion when employed in sour environments where hydrogen sulfide and chlorides are present. To overcome the problems, an effort should be made to improve or enhance the surface properties for a longer service life. There are varieties of coatings developed and used to improve surface material properties. There are several kinds of coating methods; chemical vapour deposition (CVD), physical vapour deposition (PVD), thermochemical treatment, oxidation, or plasma spraying. This paper presents the research result of the influence of Diamond-Like Carbon (DLC) coating deposited using DC plasma enhanced chemical vapor deposition (DC-PECVD) on corrosion rate (by potentiodynamic polarization method) of HQ 805 machinery steel. As a carbon sources, a mixture of argon (Ar) and methane (CH4) with ratio 76% : 24% was used in this experiment. The conditions of experiment were 400 °C of temperature, 1.2 mbar, 1.4 mbar, 1.6 mbar and 1.8 mbar of pressure of process. Investigated surface properties were hardness (microhardness tester), roughness (roughness test), chemical composition (Spectrometer), microstructure (SEM) and corrosion rate (potentiodynamic polarization). It has been found that the optimum condition with the lowest corrosion rate is at a pressure of 1.4 mbar with a deposition duration of 4 hours at a constant temperature of 400 °C. In this condition, the corrosion rate decreases from 12.326 mpy to 4.487 mpy.
  1. 1. Anhar, W., Malau, V., Sujitno, T., Proceedings of The International Conference on Materials Science and Technology – ICMST., (2014) 71–79. Google Scholar
  2. 2. Li, X., Wu, W., Dong, H., Surface & Coatings Technology 205, (2011) 3251–3259. https://doi.org/10.1016/j.surfcoat.2010.11.046, Google ScholarCrossref, CAS
  3. 3. Ruiqiang, H., Shengli, M., Paul, C. K., Rare., Metal Materials and Engineering, 41(9) (2012) 1505–1510. https://doi.org/10.1016/S1875-5372(13)60001-6, Google ScholarCrossref
  4. 4. Falcade, T., Shmitzhaus, T. E., Reis, O. G. D., Vargas, A. L. M., Hübler, R., Müller, I. L., Malfatti, C.F., Applied Surface Science 263, (2012) 18–24. https://doi.org/10.1016/j.apsusc.2012.08.052, Google ScholarCrossref, CAS
  5. 5. Aperador, W., Caicedo, J. C., Espan, C., Cabrera, G., Amaya, C., Journal of Physics and Chemistry of Solids., 71, (2010) 1754–1759. https://doi.org/10.1016/j.jpcs.2010.08.019, Google ScholarCrossref, CAS
  6. 6. BATAN Pusdiklat Yogyakarta., 2014, Aplikasi Plasma Sputtering. Google Scholar
  7. 7. Jones, D.A., 1991, “Principles and Prevention of Corrosion”, Mcmillan Publishing Company, New York. Google Scholar
  8. 8. Bao, Morrison Jr, P.W., Woyczynski, W.A., Thin Solid Films., 485, (2005) 27–41-T. https://doi.org/10.1016/j.tsf.2005.03.026, Google ScholarCrossref, CAS
  9. 9. Morita, T., Hirano, Y., Asakura, K., Kumakiri, T., MasaruIkenaga, Kagaya, C., Materials Science & Engineering A 558, (2012) 349–355. https://doi.org/10.1016/j.msea.2012.08.011, Google ScholarCrossref, CAS
  10. 10. Santos, A. M. M., Batista, R. J. C., Martins, L. A. M., Ilha. M., Vieira. M. Q., Miquita. D. R., Guma. F. C. R., Muller. L. I., Manhabosco. T. M., Corrosion Science 82 (2014) 297–303. https://doi.org/10.1016/j.corsci.2014.01.025, Google ScholarCrossref
  11. 11. Chang, S. H., Tang, T. C., Huang, K. T., Liu, C. M., Surface & Coatings Technology., 261, (2015) 331–336. https://doi.org/10.1016/j.surfcoat.2014.11.005, Google ScholarCrossref, CAS
  12. 12. Bhattacherjee, S., Niakan, H., Yang, Q., Hu, Y., Dynes, J., Surface & Coatings Technology., 284, (2015) 153–158. https://doi.org/10.1016/j.surfcoat.2015.08.072, Google ScholarCrossref, CAS
  13. 13. Hadinata, S. S., Lee, M. T., Pan, S. J., Tsai, W. T., Tai, C. Y., Shih, C. F., Thin Solid Films 529, (2013) 412–416. https://doi.org/10.1016/j.tsf.2012.05.041, Google ScholarCrossref, CAS
  14. 14. Golsefatan, H. R., Fazeli, M., Mehrabadi, A. R., Ghomi, H., Desalination 409, (2017) 183–188. https://doi.org/10.1016/j.desal.2017.01.027, Google ScholarCrossref, CAS
  15. 15. Dalibón, E. L., Escalada, L., Simison, S., Forsich, C., Heim, D., Brühl, S. P., Surface & Coatings Technology 312, (2017) 101–109. https://doi.org/10.1016/j.surfcoat.2016.10.006, Google ScholarCrossref, CAS
  16. 16. Zhang, T. F., Deng, Q. Y., Liu, B., Wu, B. J., Jing, F. J., Leng, Y. X., Huang, N., Surface & Coatings Technology 273, (2015) 12–19. https://doi.org/10.1016/j.surfcoat.2015.03.031, Google ScholarCrossref, CAS
  17. Published by AIP Publishing.