Published Online: April 2018
AIP Conference Proceedings 1945, 020009 (2018); https://doi.org/10.1063/1.5030231
Foreign body related infection (FBRIs) is caused by forming biofilm of bacterial colony of medical equipment surfaces. In many cases, the FBRIs is still happened on the surface after medical sterilization process has been performed. In order to avoid the case, surface modification by antimicrobial coating was used. In this work, we present silver (Ag) thin film on 316 L stainless steel substrate surface was deposited using Radio Frequency Sputtering PVD (RF-PVD). The morphology of Ag thin film were characterized using SEM-EDX. Surface roughness of the thin film was measured by AFM. In addition, Kirby Bauer Test in Escherichia coli (E. coli) was conducted in order to evaluate the inhibition performance of the Ag thin film antimicrobial coating. Based on SEM and AFM results show that the particle size is increased from 523 nm to 708 nm and surface roughness from 9 to 20 nm for deposition time 10 minutes to 20 minutes, respectively. In addition, the inhibition layer of the coating is about 29 mm.
  1. 1. Eiff, C. v., Jansen, B., Kohnen, W., & Becker, K. 2005. “Infections associated with medical devices: pathogenesis, management and prophylaxis”. Drugs 65, 2:179–214. https://doi.org/10.2165/00003495-200565020-00003, Google ScholarCrossref
  2. 2. Paladini, F., Pollini, M., Sannino, A., & Ambrosio, L. 2015. “Metal-Based Antibacterial Substrates for Biomedical Applications”. Biomacromolecules 16, 7:1873–1885. https://doi.org/10.1021/acs.biomac.5b00773, Google ScholarCrossref, CAS
  3. 3. Hasan, M.M., M. Sunderland. 2015. Antimicrobial and insect-resist wool fabrics by coating with microcapsulated antimicrobial and insect-resist agents, Progress in Organic Coatings vol. 85(2015) pp. 221–229 https://doi.org/10.1016/j.porgcoat.2015.04.016, Google ScholarCrossref
  4. 4. Severino, R., G. Ferrari, K.D. Vu, F. Donsi, S. Salmieri, M. Lacroix. 2015. Antimicrobial effects of modified chitosan based coating containing nanoemulsion of essential oils, modified atmosphere packaging and gamma irradiation against Escherichia coli 0157:H7 and Salmonella Typhimurium on green beans, Food Control vol. 50, pp. 215–222 https://doi.org/10.1016/j.foodcont.2014.08.029, Google ScholarCrossref, CAS
  5. 5. Denis-Rohr, A., L.J. Bastarrachea, J.M. Goddard. 2015. Antimicrobial efficacy of N-halamie coatings prepared via dip and spray layer-by-layer deposition, Food and Bioproducts Processing vol. 96, pp. 12–19 https://doi.org/10.1016/j.fbp.2015.06.002, Google ScholarCrossref, CAS
  6. 6. Djokic, S. 2007. “Treatment of Various Surfaces with Silver and its Compounds for Topical Wound Dressings, Catheter and Other Biomedical Applications”. Meeting Abstracts MA2007-02, 12:811. Google Scholar
  7. 7. Troitzsch, D., Borutzky, U., & Junghannß, U. 2009. “Detection of antimicrobial efficacy in silver-coated medical devices”. Hygiene & Medizin 34, 3:80–85. Google Scholar
  8. 8. Prabhu, S., & Poulose, E. K. 2012. “Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects”. International Nano Letters 2, 1:32. https://doi.org/10.1186/2228-5326-2-32, Google ScholarCrossref
  9. 9. Tiller, J. C. 2006. Silver-Based Antimicrobial Coatings Polymeric Drug Delivery II: American Chemical Society. Google Scholar
  10. 10. Sutowo, C., Ikhsan, M., & Kartika, I. 2014. “Karakteristik Material Biokompetibel Aplikasi Implan Medis Jenis Bone Plate”. Seminar Nasional Sains dan Teknologi 2014. Google Scholar
  11. 11. Ewald, A., Glückermann, S. K., Thull, R., & Gbureck, U. 2006. “Antimicrobial titanium/silver PVD coatings on titanium”. BioMedical Engineering OnLine 5:22–22. https://doi.org/10.1186/1475-925X-5-22, Google ScholarCrossref
  12. 12. Ferreri, I., Calderon V, S., Escobar Galindo, R., Palacio, C., Henriques, M., Piedade, A. P., & Carvalho, S. 2015. “Silver activation on thin films of Ag–ZrCN coatings for antimicrobial activity”. Materials Science and Engineering: C 55:547–555. https://doi.org/10.1016/j.msec.2015.05.071, Google ScholarCrossref, CAS
  13. 13. PVD Coating Characterization. Manual P&P Thin Film Advanced Technologies. Badizolle, Italy, Google Scholar
  14. 14. Duygulu, N. E., Kodolbas, A., & Ekerim, A. 2014. “Effects of argon pressure and rf power on magnetron sputtered aluminum doped ZnO thin films”. Journal of Crystal Growth 394:116–125. https://doi.org/10.1016/j.jcrysgro.2014.02.028, Google ScholarCrossref
  15. 15. Craig, S., & Harding, G. 1981. “Effects of argon pressure and substrate temperature on the structure and properties of sputtered copper films”. Journal of Vacuum Science and Technology 19, 2:205–215. https://doi.org/10.1116/1.571105, Google ScholarCrossref, ISI, CAS
  16. 16. Priestland, C. R. D., & Hersee, S. D. 1972. “The effects of pressure on the deposition rate in rf sputtering processes”. Vacuum 22, 3:103–106. https://doi.org/10.1016/0042-207X(72)90468-X, Google ScholarCrossref, CAS
  17. 17. Chaudhari, A., Yan, C.-C. S., & Lee, S.-L. 2002. “Effect of surface roughness on diffusion limited reactions, a multifractal scaling analysis”. Chemical physics letters 351, 5:341–348. https://doi.org/10.1016/S0009-2614(01)01419-1, Google ScholarCrossref, CAS
  18. 18. Ewald, A., Glückermann, S. K., Thull, R., & Gbureck, U. 2006. “Antimicrobial titanium/silver PVD coatings on titanium”. BioMedical Engineering OnLine 5:22–22. https://doi.org/10.1186/1475-925X-5-22, Google ScholarCrossref
  19. 19. Jafari, N., Karimi, L., Mirjalili, M., & Derakhshan, S. J. (2016). Effect of Silver Particle size on color and Antibacterial properties of silk and cotton Fabrics. Fibers and Polymers, 17(6), 888–895. https://doi.org/10.1007/s12221-016-6052-4, Google ScholarCrossref, CAS
  20. 20. Tomšič, B., Simončič, B., Orel, B., Žerjav, M., Schroers, H., Simončič, A., & Samardžija, Z. 2009. “Antimicrobial activity of AgCl embedded in a silica matrix on cotton fabric”. Carbohydrate polymers 75, 4:618–626. https://doi.org/10.1016/j.carbpol.2008.09.013, Google ScholarCrossref, CAS
  21. Published by AIP Publishing.