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 Abstract: In the current study, a direct method was used to synthesize a new series of 
charge-transfer complex compounds. Reaction of different quinones with 3,4-selenadiazo 
benzophenone in a 1:1 mole ratio by acetonitrile gave a unique charge-transfer complex 
compound in a good yield. All compounds were characterized by UV-Vis, FTIR, 1H-NMR, 
and 13C-NMR. The analysis findings agreed with the produced compound’s proposed 
chemical structures. The molecular structure of the produced charge-transfer complex 
compounds has been investigated using density functional theory. The basis set of 3–21G 
geometrical designs throughout the geometry optimization, HOMO surfaces, LUMO 
surfaces, and energy gap has been created. The acceptor and donor have also been studied 
by comparing the HOMO energies of the charge-transfer complexes. The lower case, 
electron affinity, ionization potential, electronegativity, and electrophilicity where the 
total energies of donor-acceptor system and geometric structures demonstrate this 
structure’s stability. Additionally, the donor-acceptor system has higher reactivity than 
other systems and larger average polarizability when compared to the donor and acceptor. 
The findings of this study enable us to choose the kind of bridge that will interact with the 
donor and acceptor to determine the physical characteristics of the donor-bridge-acceptor. 

Keywords: charge-transfer complexes; 3,4-selenadiazo benzophenone; acetonitrile; 
difference quinones 

 
■ INTRODUCTION 

Since the nineteenth century, there have been 
known to be organoselenium compounds. Organoselenium 
chemistry developed, and a more organized understanding 
and reactions started to take the shape of their structures 
[1]. Selenadiazoles, which have one atom of selenium and 
two nitrogen atoms, are a significant type of heterocyclic 
organoselenium compounds [2]. The majority of reactions 
used to synthesize selenadiazole are known to be based on 
the reaction between SeO2 and diamine [3-5]. 1,2,5-
Selenadiazoles are widely and extensively investigated 
forms of selenadiazoles for a variety of applications due to 
their simplicity in preparation [6]. Heterocyclic 
compounds of organoselenium (1,2,5-selenadiazole) have 
drawn interest as light emitters, organic metals, drugs, 
medicinally important species, oil additives, and so forth. 
Alternately, a variety of groups have been developed for 
selenium, permitting, for example, electrophilic 

enantioselective additions variants of a number of 
additional selenium reaction types [7]. There has recently 
been a lot of interest in research on the complexes of 
charge-transfer for selenadiazole compounds with 
quinones that function as electron acceptors, such as p-
benzoquinone, anthraquinone, tetrachlorobenzoquinone, 
7,7,8,8-Tetracyano quino dimethane (TCNQ), and 1,4-
Dihydroxyanthraquinon [8] that we used in our study. 

The physical studies of these new complexes have 
been described [9-10]. Charge transfer complexes (CT 
complexes) have received a great deal of attention because 
of their special chemical and physical characteristics and 
the potential for their use in a variety of fields, including 
optical communications and optoelectronics [11-12], solar 
cells and organic semiconductors [13-17], pharmacology 
(anti-inflammatory and antibacterial activity) [18-22]. 
Charge-transfer complexes of selenadiazole have been 
synthesized and studied spectroscopically [23-28]. 
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In this paper, we report the synthesis of new 
compounds of charge-transfer complexes through the 
reaction of 3,4-selenadiazo benzophenone with different 
quinones such as (p-benzoquinone, anthraquinone, Tetra 
chlorobenzoquinone, 7,7,8,8-Tetracyanoquinodimethane, 
and 1,4-Dihydroxyanthraquinon). 

■ EXPERIMENTAL SECTION 
Materials 

The chemicals used included 3,4-diamino 
benzophenone (Sigma-Aldrich), ethanol absolute, 
acetonitrile (Fluka.), p-benzoquinone (Sigma-Aldrich), 
anthraquinone (Sigma-Aldrich), Tetrachlorobenzoquinone 
(Fluka), 7,7,8,8-Tetracyanoquinodimethane (Sigma-
Aldrich), 1,4-Dihydroxyanthraquinon (Strem chemicals 
Inc.), selenium dioxide powder (Strem chemicals Inc.), 
nitric acid (HGB). 

Instrumentation 
1H-NMR spectrum was recorded on Bruker 500 

MHz spectrometers with TMS as an inner reference 
utilizing DMSO-d6 as the solvent. Infrared spectra were 
recorded with KBr disc using an FT-IR 
spectrophotometer Shimadzu model 8400 S in 4000–
250 cm−1, UV-Visible Spectrophotometer Shimadzu 
double-beam model UV-1650 (Japan) equipped quartz 
cells with 1.00 cm, electrothermal melting point 
apparatus. Gaussian (G09W) was used for the DFT 
calculation employing the basis set of 3–21G. 

Procedure 

Preparation of selenadiazo-3,4-diamino benzophenone 
3,4-Diamino benzophenone (4.24 g, 20 mmol) was 

dissolved in 30 mL of ethanol and mixed with 2.2 g 
(20 mmol) of selenium dioxide (SeO2), using a round 
bottom flask. The mixture was refluxed in a water bath for 
2 h until a coffee-colored solution was formed. After that, 

the solution was cooled, filtered, and washed with hot 
ethanol to obtain a coffee-colored precipitate with a 
yield of 80% and a melting point of 95 °C, as shown in 
Scheme 1. The Rf value is 0.73 (7:3) (Ethyl acetate:n-
hexane). 

Preparation of benzoquino-3,4-selenadiazo 
benzophenone (A) 

3,4-Selenadiazo benzophenone (1.147 g, 4 mmol) 
was dissolved in 30 mL of acetonitrile and mixed with 
0.432 g (4 mmol) of p-benzoquinone dissolved in 30 mL 
of acetonitrile and heated using reflux in a water bath for 
3 h. The solution was cooled and evaporated by a rotary 
evaporator and washed with small amounts of 
acetonitrile to obtain a pure and shiny precipitate with a 
yield of 79% and a melting point of 108 °C, as shown in 
Scheme 2. Rf value = 0.70 (7:3) (Ethyl acetate:n-hexane). 

Preparation of anthraquino-3,4-selenadiazo 
benzophenone (B) 

3,4-Selenadiazo benzophenone (1.147 g, 4 mmol) 
was dissolved in 30 mL of acetonitrile and mixed with 
0.832 g (4 mmol) of anthraquinone dissolved in 30 mL 
of acetonitrile and heated using reflux in a water bath for 
3 h. The solution was cooled and evaporated by a rotary 
evaporator and washed with small amounts of 
acetonitrile to obtain a pure and shiny light yellow 
crystals precipitate formed with a yield of 90% and a 
melting point of = 190 °C, as shown in Scheme 2. Rf 
value = 0.60 (7:3) (Ethyl acetate:n-hexane).  

Preparation of tetrachlorobenzoquino-3,4-
selenadiazo benzophenone (C) 

3,4-Selenadiazo benzophenone (1.147 g, 4 mmol) 
was dissolved in 30 mL of acetonitrile and mixed with 
0.983 g (4 mmol) of tetrachlorobenzoquinone in 30 mL 
of acetonitrile and heated using reflux in a water bath for 
3 h. The solution was cooled and evaporated by a rotary 
evaporator and washed with small amounts of acetonitrile 

 
Scheme 1. Preparation of -3,4-selenadiazo benzophenone compound 
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to obtain a pure and shiny dark brown crystals precipitate 
formed with a yield of 85% and a melting point of 110 °C, 
as shown in Scheme 2. Rf value = 0.66 (7:3) (Ethyl 
acetate:n-hexane). 

Preparation of 7,7,8,8-tetracyanoquinodimethyl-3,4-
selenadiazo benzophenone (D) 

3,4-Selenadiazo benzophenone (1.147 g, 4 mmol) 
was dissolved in 30 mL of acetonitrile and mixed with 
0.816 g (4 mmol) of 7,7,8,8-tetracyanoquinodimethane 
dissolved in 30 mL of acetonitrile and heated using reflux 
in a water bath for 3 h. The solution was cooled and 
evaporated by a rotary evaporator and washed with small 
amounts of acetonitrile to obtain a pure and shiny dark 
yellow crystals precipitate formed with a yield of 82% and 
a melting point of 160 °C, as shown in Scheme 2. Rf value 
= 0.62 (7:3) (Ethyl acetate:n-hexane). 

Preparation of 1,4-dihydroxyanthraquino 3,4-
selenadiazo benzophenone (E) 

3,4-Selenadiazo benzophenone (1.147 g, 4 mmol) 
was dissolved in 30 mL of acetonitrile and mixed with 
0.960 g (4 mmol) of 1,4-Dihydroxyanthraquinon dissolved 
in 30 mL of acetonitrile and heated using reflux in a water 
bath for 3 h. The solution was cooled and evaporated by a 
rotary evaporator and washed with small amounts of 

acetonitrile to obtain a pure and shiny pink-yellow 
precipitate formed with a yield of 71% and a melting 
point of 170 °C, as shown in Scheme 2. Rf value = 0.86 
(7:3) (Ethyl acetate:n-hexane).  

■ RESULTS AND DISCUSSION 
The present study involved the preparation of 

charge transfer complexes compounds derived from 3,4-
selenadiazo benzophenone [19] (that was prepared in 
the first step) by reacting 3,4-selenadiazo benzophenone 
with different quinones in acetonitrile to obtain a series 
of charge transfer complexes (A–E). The UV-visible 
spectra were recorded from 200–750 nm. In DMSO as a 
solvent, there are two types of electronic transitions of n-
π* and π-π* as provided in Fig. S1 [29-30] and Table 1. 
The n-π* transitions experience a significant blue shift. 
The development of complexes and the deviating 
electron cloud around the selenium atom are 
responsible for this alteration. The electron donors and 
quinones decrease the transition of π-π* and n-π* 
conjugate effects in the group of the chromophore, and 
the energy required for the π-π* and n-π* transitions 
increase. As a result, the absorption band shifted toward 
shorter wavelengths. 
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Table 1. UV-Visible (λmax nm) spectral data of selected compounds 

Seq. Compound λmax  
(C=C) 

λmax  
(C=O) 

λmax  
(C=N) 

λmax  
(C-Cl) 

λmax  
(C≡N) 

λmax  
(C-OH) 

1 3,4-Selenadiazo benzophenone 225 273 355    
2 A 215 286 355    
3 B 220 285 365    
4 C 220 300 350 455   
5 D 235 275 387  450  
6 E 230 295 340   490 

 
The IR spectra of all prepared compounds showed 

common elements in characteristic bands and specific 
regions in the fingerprint and other locations. The 
proposed structures of the synthesized compounds were 
verified using the IR spectrum [28,31] as provided in 
Table 2 as well as Fig. S2–S7. Table 2 showed all the 
expected peaks for 3,4-selenadiazo benzophenone and 
charge transfer complexes derivatives. 

1H-NMR spectra [28,31] showed all the expected 
peaks. The explanations for each spectrum are provided 
in the DMSO solvent of the compounds (A–E), as shown 
in Table 3 and Fig. S8–S13. 

The 13C of the first compound (3,4-Selenadiazo 
benzophenone) was measured as shown in Fig. S14. 13C-
NMR (500 MHz, DMSO-d6): Ar. 6C δ 126.6 (1C, s), Ar. 9C 
127.1 (1C, s), Ar. 15C 127.8 (1C, s), Ar. 8C 127.9 (1C, s), Ar. 
(14C, 16C) 128.4 (2C, s), Ar. (13C, 17C) 129.0 (2C, s), Ar. 7C 
129.3 (1C, s), Ar. 12C 137.2 (1C, s), Ar. (3C, 4C) 160.4–
160.6 (2C, 160.5 (s), 160.5 (s)), Ar. 10C 195.0 (1C, s). 

Computational Analysis 

All the charge-transfer complex compounds of 3,4-
selenadiazobenzophenon under investigation were 
labeled as seen in Fig. S15. The method's accuracy in 
describing the compound's characteristics in the gas 
phase was evaluated. The Density functional theory 
(DFT) at B3LYP (hybrid functional), the available 
computational levels which combine Lee, Yang, and 
Parr's correlation with Becke's exchange, was used to 
study the electronic properties and geometric structures 
in all quantum calculations [32-33]. Using the basis set 
of 3–21G and the Gaussian 09W software, this method 
described every atom [29]. Using estimated DFT-based 
descriptors, the compounds' reactivity and stability were 
assessed using Eq. (1-4) [30,34]. 

 V r ,T

E
N
      

 (1) 

 

2

2
V r ,T

1 E
2 N

 
      

 (2) 

Table 2. FTIR spectral data of selected compounds 

Functional 
group 

Compounds 
3,4-Selenadiazo 
benzophenone 

A B C D E 

Ar. C–H 3061 3064 3070 3064 3051.49 3026.41 
Ar. (C=O) 1649 1639 1678 1691.63 1639.55 1691.63 
Ar. C=N 1579–1600 1575–1595 1577–1591 1570 1595.18 1591.33–1631.88 
Ar. C=C 1490–1500 1433–1500 1450–1471 1489 1543 1454.38 

Aliphatic C=C - - - - 1543 - 
Ar. C-Se-N 3248.54 3257 3221 3231 3138 3200 

Aliphatic C≡N - - - - 2222 - 
Ar. OH - - - - - 3500–3600 
Ar. C-Cl - - - 550–880 - - 
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Table 3. 1H-NMR spectral data of selected compounds 
Seq. Compounds Structure of the compound 1H-NMR (DMSO-d6); TMS = 0 ppm 

1 
3,4-Selenadiazo 
benzophenone 

 

Ar. 14C-H, 16C-H (2H, t, δ 7.52); Ar. 15C-
H, 17C-H (2H, m, δ 7.74); Ar. 13C-H, 
(1H, t, δ 7.88); Ar. 9C-H, (1H, d, δ 7.91); 
Ar. 8C-H, (1H, d, δ 8.01); Ar. 6C-H, (1H, 
s, δ 8.10). 

2 (A) 

 

Ar. 15C-H, (1H, t, δ 7.75); Ar. 17C-H (1H, 
d, δ 7.87); Ar. 13C-H, 14C-H, 16C-H, 19C-
H, 20C-H, 22C-H, 23C-H (7H, m, δ 7.56-
7.64); Ar. 8C-H (1H, d, δ 7.9); Ar. 9C-H, 
(1H, d, δ 8.02); Ar. 6C-H, (1H, s, δ 8.10). 

3 (B) 
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Ar. 14C-H, 16C-H(2H, m, δ 7.95); Ar. 15C-
H, 17C-H, (2H, m, δ 7.89); Ar. 24C-H, 
27C-H, 28C-H, 31C-H (4H, m, δ 8.23); Ar. 
25C-H, 26C-H, 29C-H, 30C-H (4H, m δ 
7.63); Ar. 13C-H, (1H, t, δ 7.88); Ar. 8C-H 
(1H, d, δ 8.02); Ar. 9C-H, (1H, d, δ 8.01); 
Ar. 6C-H, (1H, s, δ 8.10). 

4 (C) 

 

Ar. 14C-H, 16C-H (2H, m, δ 7.6); Ar. 15C-
H, 17C-H (2H, m, δ 7.74); Ar. 13C-H, 
(1H, t, δ 7.86); Ar. 9C-H, (1H, d, δ 7.88); 
Ar. 8C-H, (1H, d, δ 8.00); Ar. 6C-H, (1H, 
s, δ 8.09). 

5 (D) 

 

Ar. 15C-H, (1H, t, δ 7.62); Ar. 17C-H (1H, 
d, δ 7.75); Ar. 13C-H, 14C-H, 16C-H, (3H, 
m, δ 7.86); Ar. 8C-H (1H, d, δ 7.87); Ar. 
9C-H, (1H, d, δ 8.00); Ar. 6C-H, (1H, s, δ 
8.07). 

6 (E) 

 

Ar. 14C-H, 16C-H(2H, m, δ 7.98); Ar. 15C-
H, 17C-H, (2H, m, δ 7.89); Ar. 24C-H, 
27C-H, 28C-H, 31C-H (4H, m, δ 7.44); Ar. 
25C-H, 26C-H, 29C-H, 30C-H (4H, m, δ 
7.41); Ar. 13C-H, (1H, t, δ 7.86); Ar. 8C-H 
(1H, d, δ 7.89); Ar. 9C-H, (1H, d, δ 8.02); 
Ar. 6C-H, (1H, s, δ 8.25). Ar. 33O-H, (2H, 
s, δ 12.65). 

 
1S

2



 (3) 

2

2





 (4) 

where μ, η, S, and ω are chemical potential, chemical 
hardness, chemical softness and electrophilicity, 
respectively., While E, N, and V(r→) are the total electron 
energy, number of electrons and the external potential,  
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respectively. The above global quantities were calculated 
using two variations approaches; the first is a finite 
approximation difference, which is based on the 
variations in total electronic energies when an electron is 
added or removed after the neutral molecule. The second 
is Koopman's theorem, which is based on the variations 
in energies of HOMO and LUMO for molecules [30,34-
35]. A finite difference approximation is used to the 
quantities of global, which can be given by Eq. (5-6). 

 IP EA
2


   (5) 

 IP EA
2


   (6) 

Koopman's theory is given by Eq. (7-8): 
 HOMO LUMOE E

2


   (7) 

 HOMO LUMOE E
2


   (8) 

A B3LYP functional in G09W and the standard 3-
21G basis set for all charge-transfer complex compounds 
in the gaseous phase were used to obtain the equilibrium 
geometries. Compounds were thoroughly optimized at 
the DFT level of theory (see Fig. S16). The energy of the 
Highest Occupied Molecular Orbital (HOMO), and the 
Lowest Unoccupied Molecular Orbital (LUMO) is the 
electronic states, describing specific places where  
 

electrons with quantized energy exist, where the atomic 
orbitals and molecular orbitals combine linearly. The 
difference between LUMO and HOMO gives the energy 
band gap (Eg) as presented in Eq. (9) [36]. 

LUMO HOMOEg E E   (9) 
The property of the bandgap energy is 

fundamental in solids because it allows the material 
prediction, whether it is a semiconductor, insulator, or 
conductor. It is the difference in energy between the 
higher whole energy level and the lower virtual energy 
level [37] (see Fig. S16 and Table 4). 

Electrophilicity and electronegativity 
The ability of a molecule to take up electrons is 

measured by chemical electrophilicity, which is based on 
the chemical hardness and chemical potential, where 
hardness is defined as resistance to deformation and 
change. Electronegativity, on the other hand, is a 
measurement of an atom's ability to attract an electron 
density (or shared pair of electrons) towards itself. Eq. 
(10) and (11) [32,38] can be used to compute 
electronegativity (χ) and electrophilicity (w) and the 
result can be seen in Table 5. 

 HOMO LUMOE E
2


   (10) 

2
w

2





 (11) 

Table 4. The electronic states of the charge-transfer complex compounds 
Compound HOMO (eV) LUMO (eV) Eg (eV) 

3,4-Selenadiazo benzophenone -6.4272741 -2.8848 3.54247 
A -5.2267689 -3.23962 1.987146 
B -4.8909975 -2.7629 2.128094 
C -5.9358615 -4.27143 1.664436 
D -5.9418477 -0.49332 5.44853 
E -4.9367103 -3.01922 1.917489 

Table 5. Electronegativity and electrophilicity of the charge-transfer complex compounds 
Compound Electronegativity (eV) (X) Electrophilicity (eV) (w) 

3,4-Selenadiazo benzophenone -4.65604 -6.11966 
A -4.2332 -9.01794 
B -3.82695 -6.882 
C -5.10364 -15.6492 
D -3.21758 -1.90011 
E -3.97797 -8.25258 



Indones. J. Chem., 2022, 22 (6), 1663 - 1672    

 

Haider Shanshool Mohammed and Nuha Hussain Al-Saadawy   
 

1669 

Electron affinity and ionization potential 
The energy produced when an atom gains an 

electron is known as electron affinity. The energy is 
necessary to expel an electron from a negatively charged 
ion. The ionization potential measures the force of the 
bonding between the electron and the atom. It is 
equivalent to the energy needed to remove one electron 
from a neutral atom in the gas phase. As seen in Table 6, 
this is Koopman's idea [32]. 

HOMOIP E   (12) 

LUMOEA E   (13) 
Eq. (12) represents the ionization energy (IP), while Eq. 
(13) represents the energy of electronic affinity (EA). 

Acid-base hardness softness (HSAB principle) 
This principle explains how atoms or molecules 

behave when used as acids and bases in chemistry. First, 
it must be demonstrated that whereas soft and hard bases 
stand for donors, soft and hard acids represent acceptors. 
Eq. (14) and (15) [39-41] can be used to express hardness 
Eq. (14) and softness Eq. (15). 

 IP EA
2


   (14) 

1
2

 


 (15) 

Chemical hardness and softness are denoted by the 
symbols (η) and (σ), respectively, according to Table 6. 

In the present study, a comparison of the HOMO 
energies is presented in Table 4 to find out that the 
HOMO energy of D compound is greater than that of A, 
C, and E compounds, and the lowest in HOMO energy 
was B compound, and the arrangement of the energy 
average [42] [in LUMO energy is as follows: C > A > E > 

B > D. As a result, the energy gap is greatest at the D 
compound and lowest at the C compound [42]. 

In Table 5, the electronegativity of C was larger 
than the electronegativity of A, B, D, and E. The C 
compound was the largest electrophilic molecule, 
whereas D has the least electrophilicity among all 
prepared compounds [43-44]. 

According to Table 6, the behavior of 
organoselenium compounds can be classified as donors 
or acceptors through a comparison between A, B, C, D, 
and E. The hardness of D is greater than the hardness of 
A, B, C and E; hence D will behave as a hard base. The 
softness of C was greater than that of A, B, D and E, 
indicating that C will behave as a soft base [44-45]. 

■ CONCLUSION 
The current work describes straightforward and 

practical ways to synthesize various novel charge-
transfer complex compounds. Compounds A, B, C, D, 
and E were synthesized with a 71–90% yield. The current 
study's investigation of the UV-visible 
Spectrophotometer, FTIR, and 1H-NMR agrees with 
other studies in these fields. They confirm the suggested 
structures' accuracy for all the synthesized compounds. 
Regarding the theoretical investigation, it can be said 
that the B3LYP functional is an appropriate and 
practical approach, and the density functional theory 
employed in this investigation is a powerful method to 
investigate these structures' electronic characteristics. 
The experimental data agreed with the geometrical 
properties of 3-21G (d, p). This work employs the DFT 
approach to  investigate  the electronic  characteristics of  

Table 6. The charge-transfer complex compounds have ionization potential, electron affinity, hardness, and softness 

Compound Ionization potential 
(eV) (I.P) 

Electron affinity 
(eV) (E.A) 

Hardness 
(η) 

Softness (δ) 

3,4-Selenadiazo benzophenone 6.4272741 2.8848042 -1.77123 -0.28229 
A 5.2267689 3.2396226 -0.99357 -0.50323 
B 4.8909975 2.7629034 -1.06405 -0.4699 
C 5.9358615 4.2714258 -0.83222 -0.6008 
D 5.9418477 0.4933173 -2.72427 -0.18354 
E 4.9367103 3.0192216 -0.95874 -0.52152 
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charge-transfer complex compounds and geometry 
optimization by using the available B3LYP. The total 
energies donor-acceptor system and geometric structures 
demonstrate this structure’s stability. Additionally, the 
donor-acceptor system has higher reactivity than other 
systems and larger average polarizability when compared 
to the donor and acceptor. The findings of this study 
enable us to choose the kind of bridge that will interact 
with the donor and acceptor to determine the physical 
characteristics of the donor-bridge-acceptor. 
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Fig S1. UV-Visible spectrum of compounds 3,4-Selenadiazo benzophenone, A, B, C, D, and E 
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Fig S2. FTIR spectrum of 3,4-selenadiazo benzophenone 

 
Fig S3. FTIR of compound A 
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Fig S4. FTIR spectrum of compound B 

 
Fig S5. FTIR spectrum of compound (C) 
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Fig S6. FTIR spectrum of compound D 

 
Fig S7. FTIR spectrum of compound E 
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Fig S8. 1H-NMR spectrum of compound 3,4-selenadiazo benzophenone 

 
Fig S9. 1H-NMR spectrum of compound A 
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Fig S10. 1H-NMR spectrum of compound B 

 
Fig S11. 1H-NMR spectrum of compound C 
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Fig S12. 1H-NMR spectrum of compound D 

 
Fig S13.1H-NMR spectrum of compound E 
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Fig S14. 13C NMR spectrum of compound 3,4-selenadiazo benzophenone 

    
Compound of 3,4-selenadiazo benzophenone 

 
Compound A 

   
Compound B 
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Compound C 

   
Compound D 

   
Compound E 

Fig S15. Molecular structure ball and tube model of compounds 3,4-selenadiazo benzophenone, A, B, C, D, and E 

        
                                (HOMO) of 3,4-selenadiazo benzophenone               (LUMO) of 3,4-selenadiazo benzophenone 

      
                                           (HOMO) of compound A                                                     (LUMO) of compound A 

          
                                            (HOMO) of compound B                                                        (LUMO) of compound B 
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                                           (HOMO) of compound C                                                         (LUMO) of compound C 

                
                                               (HOMO) of compound D                                                        (LUMO) of compound D 
 

      
                                              (HOMO) of compound E                                                        (LUMO) of compound (E). 

Fig S16. Molecular orbital HOMO and LUMO of compounds 3,4-selenadiazo benzophenone, A, B, C, D, and E 
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