LAPORAN TEKNIS 2016

60/AIR 5/OT 02 02/01/2017

DOKUMEN TEKNIS PERIZINAN IRADIATOR UNTUK PENGAWETAN PANGAN

Achdiyat, Muhamad Aminudin, Agus Hermanto, Prihatiningsih, Alfrida

PUSAT APLIKASI ISOTOP DAN RADIASI BADAN TENAGA NUKLIR NASIONAL 2017

LAPORAN TEKNIS 2016

60/AIR 5/OT 02 02/01/2017

DOKUMEN TEKNIS PERIZINAN IRADIATOR UNTUK PENGAWETAN PANGAN

Achdiyat, Muhamad Aminudin, Agus Hermanto, Prihatiningsih, Alfrida

Mengetahui/Menyetujui

Kepala Bidang Keselamatan Kerja dan Lingkungan

Dra. Fransisca A.E. Tethool NIP. 19600512 198402 2 001

Kepala Pusat Aplikasi Isotop dan Radiasi

Totti Tjiptosumirat NIP. 19630830 198803 1 002

DOKUMEN TEKNIS PERIZINAN IRADIATOR UNTUK PENGAWETAN PANGAN

ABSTRAK

Iradiator merupakan suatu fasilitas untuk melakukan iradiasi berbagai macam sampel atau produk dengan tujuan penelitian, pengembangan, pengawetan, dan sterilisasi. Karena itu, irradiator dapat disebut sebagai fasilitas iradiasi. Iradiator gamma terbagi lagi menjadi empat kategori yang umumnya menggunakan zat radioaktif Co-60. Aplikasi iradiator untuk pangan, khususnya iradiator gamma, terus berkembang. Sejak dihasilkan varietaspadi Atomita I penelitian padi dengan teknologi radiasi terus berlanjut dengan menghasilkan berbagai varietas. Selain padi, beberapa penelitian jenis pangan lainnya yang menggunakan teknologi radiasi adalah sorgum, kacang kedelai, kacang hijau, buah pisang, dan umbi akar. Iradiator gamma juga digunakan untuk perlakuan karantina produk pangan berupa buah mangga. Tujuan perizinan iradiator gamma adalah untuk menjamin keselamatan dan kesehatan pekerja, masyarakat, dan perlindungan terhadap lingkungan hidup dalam pemanfaatan tenaga nuklir. Persyaratan dan tata cara perizinan ditetapkan sesuai dengan risiko yang terkait dengan keselamatan radiasi dan keamanan sumber radioaktif, sehingga semakin tinggi risiko suatu pemanfaatan tenaga nuklir, maka persyaratan izin yang diberlakukan semakin ketat. Sesuai dengan PP Nomor 29 Tahun 2008 tentang bahwa setiap orang atau badan yang akan melaksanakan Pemanfaatan Sumber Radiasi Pengion dan Bahan Nuklir wajib memiliki izin dari Kepala Bapeten. Untuk memperoleh izin sebagaimana dimaksud harus memiliki persyaratan administratif; teknis; dan/atau khusus. Persyaratan izin operasi iradiator gamma yang akan dibangung termasuk dalam Katagori IV yang memerlukan persyaratan khusus dan izin bertahap (Multi Tahap).

PENDAHULUAN

Iradiator gamma yang sedang didesain Batan termasuk iradiator kategori IV yang menggunakan kolam air sebagai penyimpan sumber Co-60. Fasilitas utama iradiator terdiri dari kendali proses, mekanisme pengangkut produk, sistem perangkat naik-turun sumber dan rak sumber, ruang iradiasi, dan kolam penyimpan sumber. Kendali proses bertugas mengendalikan semua operasi proses iradiasi melalui ruang kendali. Jika terjadi keadaan tidak normal, kegiatan iradiasi dalam ruang iradiasi terhenti otomatis dan memberikan signal *alarm* ke operator di ruang kendali. Dari beberapa kejadian kecelakaan pengoperasian iradiator, *signal* alat monitor dari beberapa alat memberikan informasi

yangtidak sama (bertentangan) sehingga salah satu informasi diabaikan oleh operator. Sistem lain yang dikendalikan oleh kendali proses adalah sistem pengangkut produk. Pengangkut produk berfungsi sebagai sarana transportasi produk yang akan diiradiasi untuk menjauhkan atau mendekatkan produk pada sumber radiasi. Sistem pengangkut yang digunakan adalah konveyor gantung tipe power and free, menggunakan carrier dan tote. Produk yang akan diiradiasi disiapkan dalam tote-tote. Tote tersebut dipasang pada carrier yang digerakkan oleh rantai konveyor. Rantai konveyor bergerak terus menerus, namun carier dapat dihentikan pada lokasi-lokasi tertentu dengan bantuan stopper pneumatik dan atau komponen mekanik lainnya. Kemudian sistem perangkat naik-turun sumber dan rak sumber, alat ini berfungsi untuk menaikkan dan menurunkan rak sumber. Rak sumber dinaikkan ke atas permukaan kolam dan berhenti pada posisi kerja untuk mengiradiasi produk. Setelah selesai mengiradiasi produk, rak sumber diturunkan ke posisi di dasar kolam, pada posisi ini disebut posisi aman. Ruang iradiasi merupakan gedung yang di dalamnya ada sumber radiasi, produk, dan ruang yang cukup untuk tempat mengiradiasi produk, dan kolam penyimpan sumber. Kolam penyimpan sumber pada iradiator ini adalah sebagai tempat menyimpan sumber Co-60 saat tidak digunakan. Kolam berisi air bebas mineral berfungsi sebagai perisai radiasi dan sekaligus sebagai pendingin sumber saat disimpan.

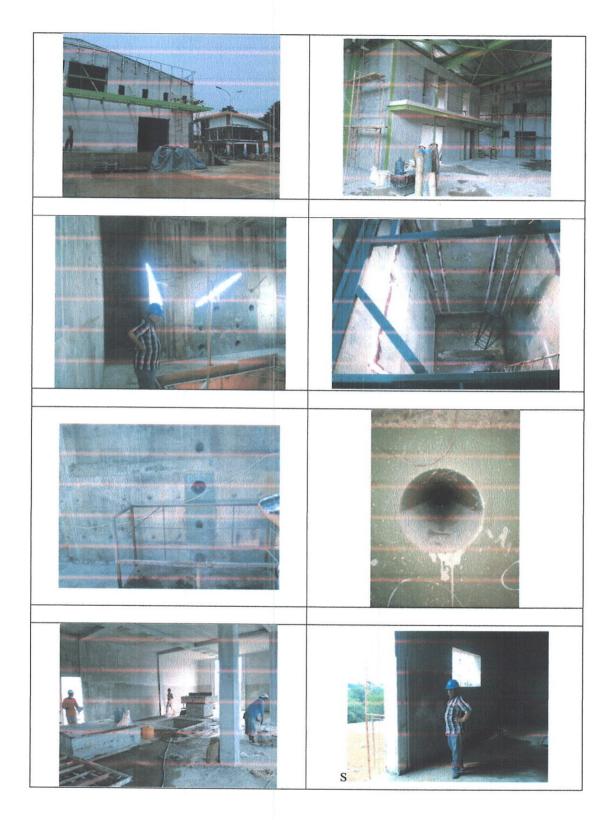
BAHAN DAN METODE

- 1. Finalisasi hasil verifikasi BAPETEN di lapangan
- 2. Melengkapi kekurangan dokumen persyaratan izin konstruksi
- 3. Finalisasi seluruh kelengkapan dokumen persyaratan izin konstruksi
- 4. Persiapan kelengkapan dokumen/data untuk izin pra komisioning
- 5. Rapat teknis persiapan izin Komisioning, pra Operasi.

HASIL DAN PEMBAHASAN

- 1. Finalisasi Dokumen Prosedur Operasi Iradiator
- 2. Finalisasi Dokumen Program Proteksi dan Keselamatan Radiasi
- 3. Finalisasi Dokumen Laporan Verifikasi Keselamatan Radiasi
- 4. Finalisasi Dokumen Program Jaminan Mutu Iradiator
- 5. Finalisasi Dokumen Program Keamanan Sumber Radioaktif
- 6. Finalisasi Dokumen Laporan Verifikasi Keamanan Sumber Radioaktif

- 7. Dokumen persyaratan personel : Operator Iradiator, Petugas Perawatan Iradiator, Petugas Dosimetri, dan Petugas Proteksi Radiasi
- 8. Dokumen Teknis Iradiator Terpasang terkait dengan Safety System
- 9. Pengajuan proses perisinan Izn Operasi Iradiator


KESIMPULAN DAN SARAN

Dari kegiatan ini dapat disimpulkan bahwa:

- 1. Secepatnya membentuk Ownwe Oragization (OO)
- 2. Penyediaan dokuemen teknis terkait dengan Safety Related dan Security Related
- 3. Penyiapan Dokuemen Program Keamanan Sumber Radioaktif

FOTO KEGIATAN

DAFTAR PUSTAKA

1. Undang Undang Nomor 10 Tahun 1997 tentang Ketenaganukliran

- Peraturan Pemerintah No. 33 Tahun 2007 tentang Keselamatan Radiasi Pengion dan Keamanan Sumber Radioaktif
- Peraturan Pemerintah No. 29 Tahun 2008 tentang Perizinan Pemanfaatan Sumber Radiasi Pengion dan Bahan Nuklir sebagai pengganti Peraturan Pemerintah No. 64 Tahun 2000 tentang Perizinan Pemanfaatan Tenaga Nuklir
- 4. Peraturan Pemerintah No. 26 Tahun 2002 tentang Keselamatan Pengangkutan Zat Radioaktif
- 5. Peraturan Pemerintah No. 27 Tahun 2002 tentang Pengelolaan Limbah Radioaktif
- 6. Peraturan Kepala BAPETEN Nomor 04 Tahun 2013 tentang Proteksi dan Keselamatan Radiasi Dalam Pemanfaatan Tenaga Nuklir
- 7. Peraturan Kepala BAPETEN No. 7 tahun 2007 tentang Keamanan Sumber Radioaktif
- 8. Peraturan Kepala BAPETEN Nomor 15 Tahun 2008 tentang Persyaratan Untuk Memperoleh Surat Izin Bekerja Bagi Petugas Tertentu Di Instalasi Yang Memanfaatkan Sumber Radiasi Pengion
- 9. Peraturan Kepala BAPETEN Nomor 01 Tahun 2010 tentang Kesiapsiagaan dan Penanggulangan Kedaruratan Nuklir
- Peraturan Kepala BAPETEN Nomor 06 Tahun 2010 tentang Pemantauan Kesehatan Untuk Pekerja Radiasi
- 11. BAPETEN, "Izin Konstruksi dan Operasi Iradiator", Keputusan Ka-BAPETEN No.11/Ka-BAPETEN/VI-99, Jakarta (1999).
- 12. IAEA, "International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources" (Safety Series No. 115), Vienna,1996 (selanjutnya disebut BSS).
- Undang-undang Nomor 32 Tahun 2009 tentang Perlindungan dan Pengelolaan Lingkungan Hidup.
- 14. PP 27 Tahun 2012 Izin Lingkungan

1. 1. 1.

- 15. PerMen LH 24 Tahun 2009 Tentang Panduan Penilaian Dokumen AMDAL
- PerMen LH Nomor 05 Tahun 2012 Tentang Jenis Usaha dan atau Kegiatan yang Wajib Dilengkapi dengan Analisis Mengenai Dampak Lingkungan Hidup