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ABSTRACT 

  

Tegal is a city in Central Java experiencing rapid industrial development. The Larangan waters of 

Tegal receive household, agricultural, and industrial waste that flows directly into the Bongkok 

River. The purpose of this study was to determine the relative effects of water quality on 
137

Cs 

activity. We found that this wastewater has caused a decline in dissolved oxygen (DO), pH and 

salinity and an increase in water temperature. Current velocity and water depth increased with 

distance from the mouth of the river and affected the correlation regression between the water 

quality parameters. The correlation regression becomes stronger in waters that were affected by 

the land waste and was very weak at stations 4 and 5, which were not strongly influenced by the 

waste from the land. The correlation regression between 
137

Cs activity in the coastal waters under 

the influence of land showed a strong correlation with several water quality parameters such as 

DO, pH, temperature, as well as current velocity and water depth. 
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INTRODUCTION 

 

An accident such as the one from Nuclear Power Plant (NPP) Fukushima on March 11, 2011, has 

pushed nuclear experts in the world to improve nuclear research activities in the sea. Some of the 

radioactive elements of concern are 
137

Cs, 
90

Sr, and 
241

Am. 
137

Cs is the most abundant 

anthropogenic radionuclide in the marine environment and has a half-life of 30.17 years. Its 

conservative nature means that the element is soluble, and is therefore easily distributed, but also 

can be deposited with the influence of other factors including particle size and mineral content of 

chemicals such as organic material (Muslim et al., 2015). 

 

Coastal and estuarine waters are the most productive aquatic systems (Pereira - Filho et al., 2001) 

suitable for spawning, growth, breeding and protective areas for a wide variety of fish, mollusks, 

crustaceans, birds and mammals (Ohrel and Register, 2006). Estuaries also support fisheries, 

transportation, and tourism, and are natural buffers between land and sea. In Indonesia, today, 

increasing pollution from industrial and agricultural waste are discharged into estuarine waters (Sri 

et al., 2014). The marine environment is also a major recipient of anthropogenic global radionuclide 

fallout from testing of nuclear weapons by the US and the USSR in the 1960s, nuclear accidents 

and waste disposal from Nuclear Power Plants (Povinec et al., 2003a; UNSCEAR, 2000). 

 

Beach areas are also important to human activity and this region becomes very sensitive to 

anthropogenic discharges (Jones et al., 2002; Muslim and Jones, 2003; Prasanna and Ranjan, 2010). 
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It is already evident that urbanization and industrialization has a great and direct influence on the 

rate of change of sedimentation in coastal areas (Lu and Matsumoto, 2005).   

 

Chemical constituents in coastal or estuarine waters can be controlled by physical influences within 

or outside the water (Jones et al., 2002). Organic materials in the ocean that can affect the level of 

adsorption of chemicals (eg. 
137

Cs), are influenced by several factors such as currents, depth of 

water and particle size (Arzayus et al., 2002; Kristensen and Blackburn, 1987; Muslim et al., 2015; 

Sun et al., 2002). Dissolution easily occurs in shallow estuarine and coastal areas due to physical 

and biological processes (Dellapenna et al., 1998; Hopkinson, 1985). Differences in environmental 

conditions cause regional differences in the biogeochemistry of the decomposition of organic 

matter. 

 

Estuarine environments are generally located at a river mouth that empties into the sea (Elliott and 

McLusky, 2002). Therefore, estuarine mixing incorporates both saline and fresh water, assisted by 

wind movement. The flow of sea water is influenced by tidal currents, while the fresh water comes 

from the river (Priya et al., 2012). Changes in water level and mixing in estuarine environments 

during low tide as well as in the monsoon season affects water quality measurements including total 

suspended solids (Chen et al., 2006; Spellman, 2011), dissolved oxygen (Perkins, 1974), water 

temperature (Olausson and Cato, 1980), salinity (Ohrel and Register, 2006; Prasanna and Ranjan, 

2010), pH (Spellman, 2011), conductivity (Smith, 1992), light intensity (Dennison et al., 1993), 

brightness (Borja and Collins, 2004; Wangersky, 2006), surface and bottom currents (Kramer et al., 

1994), nitrogen (Kennish, 2002; Neil, 2005), phosphate (Van der Zee et al., 2007) and the 

concentration of chlorophyll a (Conley et al., 2000; Muslim and Jones, 2003; Zheng et al., 2004) 

that will affect the biomass and species composition of phytoplankton (Aquino et al., 2015; Canini 

et al., 2013; Domingues et al., 2010;.Lauria et al., 1999)  

 

Larangan waters in the Tegal regency are located along the northern coast of Central Java Province. 

These waters receive various kinds of waste from the land that flowed through the Bongkok River. 

Coastal land is used as farms that receive fresh water from the Bongkok River. Rice fields, villages 

and fish market line both sides of the Bongkok River. The Tegal city is located in a very 

geographically strategic position, connecting the national and regional economies, namely the 

northern coast of Java, from west to east (Jakarta-Tegal-Semarang-Surabaya) with the central and 

southern regions of Java (Jakarta-Tegal-Purwokerto-Yogyakarta-Surabaya). The town has become 

very busy and has showed the most rapid growth in industry compared with other cities in Central 

Java. The average high temperature is 35 degrees Celsius and rainfall is very low. These conditions 

also greatly affect local water quality and impact the activity of 
137

Cs that has been detected in some 

of the Indonesian waters (Suseno and Prihatiningsih, 2014). Many previous studies have observed 

activity concentration of 
137

Cs in some marine area of Indonesia (Akhyar et al., 2013; Prihatiningsih 

and Suseno, 2007; Suseno, 2014; Suseno and Prihatiningsih, 2012; Wahyono, 2013). Research on 

the correlation between 
137

Cs activities with clay mineral content in the marine sediment of Muria 

Peninsula has also been conducted (Suseno, 2013). To enhance the study of the influence of other 

environmental parameters, we conducted this research with the main purpose was to determine the 

relative effect of water quality on the activity of 
137

Cs in the Larangan Water, Tegal.  

 

 

 

 

 

 



Jurnal Sains Nuklear Malaysia, 2017, 29(1): 45-61 

ISSN: 2232-0946 

47 

 

MATERIALS AND METHODS 

 

Determination of Research Station 

 

Seven stations were chosen with attention to the circumstances of each station including depth and 

distance from the Bongkok River estuary. The coordinates of each station were determined by GPS 

(Global Positioning System). Stations 1 and 2 are located in the breakwater area that gets the direct 

influence of the river and has a water depth < 2.5 m, stations 3 and 7 are in the region close to the 

Larangan beach with a depth < 3 m. Stations 4, 5 and 6 located far away from the coast or into the 

open sea with a depth > 3 m. Coordinates of the location of each station are shown in Table 1 and 

Figure 1.  

 

 

Table 1: Station site information 

Station 
Coordinate Depth 

Longitude Latitude (meter) 

1 06o51’35.9” 109o11’38.5” 1.44 

2 06o51’27.7” 109o11’39.1” 2.37 

3 06o51’22.5” 109o11’9.2” 2.63 

4 06o51’0.7” 109o11’22.0” 3.41 

5 06o51’0.1” 109o11’44.8” 4.13 

6 06o51’8.5” 109o12’6.3” 3.16 

7 06
o
51’38.4” 109

o
12’7.1” 1.68 

 

 

Sampling Methods 

 

Surface sea water for 
137

Cs analysis was collected using 30 L polyethylene buckets that were rinsed 

at least twice with surface seawater and then were poured into a 100 L plastic bucket until the 90 L 

mark. We immediately added K4[Fe(CN)6] and CuSO4 (10 grams each) to the water samples, which 

binds 
137

Cs in a water sample. In order for the binding to be completed, the water sample was 

stirred then allowed to stand until a precipitate containing 
137

Cs formed. Clearwater above the 

sediment was removed by vacuuming with a plastic hose, and the precipitates were collected in a 5 

L bucket and taken to the laboratory. While sampling, we were also measured water quality i.e. 

salinity, temperature, dissolved oxygen (DO), pH and water depth. 

 

Current Modeling 

 

Modeling was done using the current pattern Mike21 program. Bathymetry maps were used as an 

input model of the current pattern which is based on the depth of research sites, found using ArcGIS 

program to obtain the value of XYZ, where X and Y as coordinates point and Z is depth. We were 

then input wind data using the data ECMWF (European Center for Medium-range Weather 

Forecasting) one day prior to the study, the study day, and one day after the study. The result of 

Mike21 module program processing was a current model that showed the velocity and direction of 

currents. 
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Figure 1: Location of study station 

 

 

Preparation and Measurement 137Cs in the Laboratory 

 

At the laboratory, samples in the 5 L buckets were filtered with filter paper to separate the 

precipitates from the water. The precipitates were then oven-dried at 70 - 80oC for about 3 days. 

The dried precipitates were then put in a plastic container for the measurement (counting) using 

Gamma Spectrometer for 3 days (IAEA, 2005). 

 

 

RESULTS AND DISCUSSION 

 

Water Quality Parameters 

 

Water quality parameters in the Larangan waters including dissolved oxygen (DO), pH, 

temperature, salinity and current velocity model results are shown in Table 2. Although station 1 is 

still included in the basin area, the value of DO, pH, current velocity and salinity was the lowest 

compared with other stations. This due to 90% of organic waste from the mainland was deposited in 

estuaries (Tao et al., 2016) and decomposes in the water, causing the pH and DO to decrease as the 

organic material decomposes (Rasiq et al., 2016). The low salinity at station 1 was due to the 

freshwater inputs from the mainland. The low of current velocitys at station 1 due to the area is a 

semi-enclosed system so the current from the outside was weakened by the breakwater in front of 

the river mouth. The temperature at station 1 was the highest, even when sampling in the morning 

due to the influence of heat transfer from the mainland. 
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Table 2: Water quality in Larangan waters, Tegal 

 

Station 
Environmental Parameter 

DO 

(mg/l) 

pH Temperature 

(
o
C) 

Salinity 

(‰) 

Current 

(m/s) 

1 4.63 7.53 31.2 27 0.0487 

2 5.16 7.62 30.5 29 0.0487 

3 5.37 7.74 30.3 28 0.0299 

4 4.78 7.82 29.6 30 0.0456 

5 5.05 7.86 29.4 31 0.0609 

6 5.64 7.78 30.2 30 0.0617 

7 4.75 7.61 30.8 29 0.0211 

 

 

Figure 1 shows that the station 4 and 5 are closest to the open sea and had the deepest water depths 

of 3.41 m and 4.13 m, respectively. These conditions were affected the water quality i.e. pH which 

was the highest at these sites (7.82 and 7.86). Stations 4 and 5 were far from the river mouth and 

have low organic matter content, therefore, the concentration of carbon and nutrients are reduced 

(Ferrari, 2000). Consequently, the pH rises, indicating the water is more alkaline as well as less 

influenced by the organic material from the river, which influences pH, creating an alkaline pH 

(Schulz et al., 2006). 

 

The salinity at stations 4 and 5 was relatively high despite the low temperatures, because the fresh 

water from the river does not affect stations 4 and 5, and the level of evaporation was greater than 

near the coastline (Prasanna and Ranjan, 2010). 

 

The above conditions affect the correlation regression between parameters of water quality, where 

the correlation between the parameters was weak for stations 4 and 5, or the correlation regression 

between the parameters of the water quality becomes more significant if tested on waters still 

heavily influenced from the mainland (terrestrial runoff) such as in stations 1, 2, 3, 6 and 7. The 

correlation regression between water quality parameters in all stations and excluding stations 4 and 

5 can be seen in Figures 2, 3, 4, 5, 6, 7 and 8. 

 

    
Figure 2: Correlation regression for (a) DO and pH at all stations; (b) DO and pH at station 1,2,3,6 

and 7 
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Figure 3: Correlation regression for (a) DO and depth at all stations; (b) DO and depth at station 

1,2,3,6 and 7 

 

 

   
Figure 4:  Correlation regression for (a) DO and current velocity at all stations; (b) DO and current 

velocity at station 1,2,3,6 and 7 

 

 

   
Figure 5:  Correlation regression for (a) DO and salinity at all stations; (b) DO and salinity at station 

1,2,3,6 and 7 
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Figure 6:  Correlation regression for (a) DO and temperature at all stations; (b) DO and temperature 

at station 1,2,3,6 and 7 

 

 

   
Figure 7:  Correlation regression for (a) pH and depth at all stations; (b) pH and depth at station 

1,2,3,6 and 7 

 

 

   
Figure 8: Correlation regression for (a) pH and temperature at all stations; (b) pH and temperature 

at station 1,2,3,6 and 7 
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Oxidation of organic materials that consume oxygen in addition to reducing DO also reduces the 

pH (Marion et al., 2011). In this study, the correlation regression between DO and pH occurs well 

in areas that are still affected by the wastewater (Figure 2b; R
2
 = 0.893). However, the correlation 

regression will be weaker when we include stations 4 and 5, which are not very influenced by the 

wastewater runoff (Figure 2a; R
2
= 0.187). This shows that the mainland waste (organic waste) 

affects DO and pH. According to Muslim (2010; 2013) the increase in organic matter in the water is 

proportional to the increase in the value of COD, (Chemical Oxygen Demand) therefore reducing 

the dissolved oxygen (DO) content and pH. 

 

Figure 3b shows that the DO also has a strong positive correlation with depth (R²= 0.997) at 

stations that are influenced by the mainland. According to Chen et al., (2016) the oxidation process 

of organic material occurs at the bottom of the water so that surface water in deeper areas (stations 

4 and 5) has a higher DO content, due to the low oxidation of organic materials and photosynthesis 

producing an oxygen-rich layer higher in the water column. In addition to increasing DO, pH also 

increases with increasing depths of water. According to Ahmat et al. (2016), the correlation 

regression depends on environmental conditions, especially the slope of land sediment. In this 

study, increasing the water depth and distance from the source of waste (organic) shows that DO is 

also positively associated with the current velocity (Figure 4). 

 

Figure 6 also shows that the DO has a strong negative correlation with temperature, because 

temperature decreases with increasing distance from the mainland, while DO increases with 

distance from the mainland (Tao et al., 2016). Therefore, there is a relationship between the water 

quality parameters above. 

 

The concentration of salinity in waters is heavily influenced by several factors, such as the flow of 

fresh water from rivers, evaporation, topography and vegetation distribution (Humphries et al., 

2010). The correlation regression between salinity and DO is weakly positive (R
2
 = 0.08 and R

2
 = 

0.409) (Figure 5). Pavlov et al. (2016) found a strong correlation regression between salinity and 

oxygen (R
2
 = 0.96, n = 162) in an area with freshwater inputs from the mainland. Kim et al. (2016) 

and Chen et al. (2016) found a negative relationship between salinity with some organic materials 

from the land, spreading from Changjiang River to the East China Sea. If oxidation of organic 

matter occurs, the DO concentration will decrease; therefore, DO shows a positive correlation with 

salinity. 

 

The relative effect also occurred in regards to pH, where pH has a strong positive correlation with 

depth (Figure 7). The depth increases and temperature decrease with distance from the estuary. 

Therefore, the pH also has a relatively strong association with temperature (Figure 8). 

 

Current Patterns 

 

The results of modeling the direction and current velocity at high and low tide are shown in Figure 

9 and 10. At high tide, the current moves from southeast to northwest, with uneven flow velocity; 

flow toward the offshore area is stronger than in areas near the coast (estuarine), and the most 

powerful location is in the eastern station, station 6 (Figure 9). At low tide, the current flows in the 

opposite direction, from the northwest to the southeast, with the current pace increasing in the east 

(Figure 10). 

 

 



Jurnal Sains Nuklear Malaysia, 2017, 29(1): 45-61 

ISSN: 2232-0946 

53 

 

  
Figure 9: Current pattern at high tide 

on October 2015 

Figure 10: Current pattern at low tide 

on October 2015 

 

 
137

Cs Activity in the Larangan Waters Tegal 
 

137
Cs activity in the Larangan waters, Tegal was detected with values ranging between 0.03 to 1.22 

mBq/L, and an average value of 0.58 mBq/L (Table 3). This value is lower than previous research 

in Sayung waters, Demak in October 2014, with an average value of 0.86 mBq/L (Muslim et al., In 

press) and higher than in Gresik waters tested in September 2013 with a value of 0.200 mBq/L 

(Muslim et al., 2015). The difference is due to different water conditions that 
137

Cs in water are 

heavily influenced by factors such as current pattern and ion exchange with other elements such as 

organic matter and sulfur (Muslim et al., 2015). 

 

 

Table 3: Analysis result of 
137

Cs in sea water 

Station 
137

Cs 

(mBq/L) 

Depth 

(m) 

Current 

(m/s) 

1 0.03 1.44 0.0012 

2 0.95 2.37 0.0487 

3 0.77 2.63 0.0299 

4 0.73 3.41 0.0456 

5 0.64 4.13 0.0609 

6 1.22 3.16 0.0617 

7 0.29 1.68 0.0211 

Mean 0.58   

 

 

42 
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Table 3 shows that the highest 
137

Cs activity (1.22 mBq/L) and current velocity (0.0617 m/sec) at 

station 6. While the lowest occurred in station 1 for 
137

Cs (0.03 mBq/L) and for  current velocity ( 

0.0012 m/sec). Correlation between current velocity and 
137

Cs activity at all stations is positively 

correlated R²= 0.752 (Figure 11) and even stronger when the correlation was tested at station 1, 2, 

3, 6 and 7 (R²= 0.880). This shows that the 
137

Cs activity levels are affected by the current velocity, 

because according to Povinec et al. (2003b) the radionuclides in water can be affected by advection, 

dispersion, and precipitation. 

 

 

   
Figure 11: Correlation regression for (a) 

137
Cs and current velocity at all stations; (b) 

137
Cs and 

current velocity at station 1,2,3,6 and 7 

 

 

Based on the water quality conditions above, the relative correlation occurs between the activity of 
137

Cs with water quality parameters as shown in Figures 12, 13, 14, 15 and 16. 

 

   
Figure12: Correlation regression for (a) 

137
Cs and DO at all stations; (b) 

137
Cs and DO at station 

1,2,3,6 and 7 

 

 

Figure 12 shows that the 
137

Cs activity has a positive correlation with DO (R
2
= 0.747 and R

2
= 

0.896). This correlation occurs indirectly, because 
137

Cs have direct influence with organic material, 

and when organic matter increases, 
137

Cs in the water decreases because it binds with the organic 
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matter and settles to the bottom (Van Bergeijk et al., 1992). Therefore, more organic material 

reduces the degradation time for 
137

Cs and DO in the water. 

 

   
Figure13:  Correlation regression for (a) 

137
Cs and depth at all stations; (b) 

137
Cs and depth at 

station 1,2,3,6 and 7 

 

 

Organic materials sourced from the mainland decreased with distance from the source. This 

research shows that the further away from the mainland, the water also becomes deeper. Under 

these conditions, the DO and 
137

Cs activity have a strong correlation with water depth (Figure 13), 

with R
2
= 0.921 at the stations under the influence of the organic material. 

 

pH has a strong positive correlation (R
2
= 0.893) with DO (Figure 2) at stations that are affected by 

the wastewater (organic). DO and pH also affects the correlation between
137

Cs activity and pH 

(Figure 14). Rahman and Voigt (2004) found that increasing 
137

Cs with an increase in pH and K 

content of sediment (soil potassium). 

 

 

   
Figure 14: Correlation regression for 

137
Cs and pH at all stations; (b) 

137
Cs and pH at station 1,2,3,6 

and 7 
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The variation of salinity is due to many factors, so the correlation regression between DO and 

salinity was not very strong with an R
2 

= 0.080 and R
2 

= 0.409 (Figure 5). This resulted in the 

correlation regression between 
137

Cs activity with salinity becoming stronger as shown in Figure 15. 

   
Figure 15: Correlation regression for (a) 

137
Cs and salinity at all stations; (b) 

137
Cs and salinity at 

station 1,2,3,6 and 7 

 

 

The distribution of temperature in the Larangan waters Tegal decreases with distance from the 

mainland. The DO concentration, as opposed to temperature, increased with distance from the 

mainland. The conditions also affect the correlation between 
137

Cs activity and temperature (Figure 

16), which has a negative correlation (R
2 

= - 0.874) to stations that are still affected by the waste 

organic materials from the mainland.  

 

 

   
Figure 16: Correlation regression for (a) 

137
Cs and temperature at all stations; (b) 

37
Cs and 

temperature at station 1,2,3,6 and 7 

 

 

CONCLUSIONS 

 

The values of the water quality parameters in the Larangan waters, Tegal i.e. pH, DO, salinity, and 

temperature are influenced by the runoff from the Bongkok River which contains both organic 

material and warm water. Station 1 is located in the estuary of the river, the shallowest water depth, 
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weakest current velocity and the highest water temperature. Station 1 also has the lowest pH, DO, 

and salinity. The low DO at station 1 is due to the decomposition of organic material, there is the 

highest organic material at this station compared to other stations. The result shows the strong 

correlated regression between the water quality parameters at other stations (1,2,3,6 and 7) without 

station 4 and 5that both stations are not very affected by waste from the mainland. The water 

quality also influenced the correlation regression with 
137

Cs activity. The lowest 
137

Cs activity 

recorded at station 1 because high content of organic material in waste at station 1. The high 
137

Cs 

activity found at stations 4 and 5 due to small input of mainland waste. The correlation regression 

between water quality and 
137

Cs activity was also strong correlated when this regression analysis 

was test at 5 stations without station 4 and 5.  
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