
44

PHOTOSYNTHESIS OF PERIPHYTON:                                               
RELATIONSHIPS BETWEEN LIGHT AND AGE OF ALGAL MAT

N. Nofdianto* & A. Dauta**

ABSTRAK
Mengamati sebuah perbandingan laju proses fotosintesis perifiton yang diukur pada 
berbagai akumulasi biomassa (umur 7 hingga 35 hari) dan intensitas cahaya yang 
berbeda. Sampel perifiton diperoleh dari hasil kultur massal pada sebuah foto-
reactor di bawah kondisi periode terang/gelap 15/9 jam, intensitas cahaya sekitar 50 
µmol m-2 s-1, dan suhu sekitar 20 °C.  Substrat berupa keramik dengan ukuran sekitar 
65 cm² ditempatkan pada box flaxy dengan volume sekitar 1000 ml dan diekspos 
dengan berbagai intensitas cahaya (dari 30 hingga 900 µmol m-2 s-1). Laju fotosintesis 
dan respirasi dikuantifikasi berdasarkan perubahan konsentrasi oksigen sesaat  yang 
berlangsung selama pengukuran. Tidak kelihatan efek inhibisi yang ditimbulkan oleh 
peningkatan intensitas cahaya. Pada penelitian ini model hubungan fotosintesis-
intensitas cahaya memilki persamaan saturasi  [ P = Pmax * I/(I +KI) ]. Parameter 
Pmax dan KI  secara gradual meningkat dengan bertambahnya umur komunitas 
perifiton. Laju produksi net diekspresikan sebagai perbedaan antara nilai fotosintesis 
dan respirasi dan secara linear miningkat hingga umur 21 hari (1.75 g O2.m

-2.d-1) 
dan cenderung menurun pada umur lebih tua. Jika diekspresikan per satuan klorofil, 
laju produksi net sekitar  9 mg O2.mg chl. a-1. h-1,  sementara laju respirasi sekitar 1 
mg O2.mg chl. a-1. h-1. 
Kata kunci : perifiton, fotosintesis, respirasi, algal, produksi net

ABSTRACT
A comparison of the photosynthesis rate have been measured between various  
periphytic bio-films of increasing biomass (7 to 35 days old). The samples of 
periphyton were provided by cultures carried out under the following conditions:  
15/9 dark-light cycle and  50 µmol m-2 s-1 , and 20 °C. The tile (about 65 cm²) with 
bio-film was placed in a closed volume (about 1 liter) of chamber and exposed to 
increasing light intensities (30 to 900 µmol m-2 s-1). The photosynthesis and 
respiration rates were deduced from the instantaneous variations of the dissolved 
oxygen concentration. No inhibition effect was observed for the higher light 
intensities. The photosynthesis  corresponded  to an equation of saturation [ P =
Pmax * I/(I +KI) ]. Pmax and KI Parameters as well as the respiration rate gradually 
increased with the age of bio-films. The net production rate expressed as the 
difference between the photosynthesis and the respiration rates linearly increased up 
to 21 days (1.75 g O2.m

-2.d-1) and then slightly decreased for older bio-films. 
Expressed versus chlorophyll unit, the net production rate was  about 9 mg O2.mg chl. 
a-1. h-1, while the  respiration rate was about 1 mg O2.mg chl. a-1. h-1.
Key words : periphyton, photosynthesis, respiration, algal mat, net production, 

INTRODUCTION

Periphyton is an important 
component of many lotic systems. It can 
produce high biomass (Moss, 1968; 
Hansson, 1988a) influencing nutrient, 
carbon cycling, and invertebrate 
composition (Lock et al., 1984; Meyer et 
al., 1988; and Lamberti et al., 1989); it may 

also store a part of the newly mineralized 
nutrients at the sediment surface, thereby 
having a competitive impact on 
phytoplankton (Carlton & Wetzel, 1988; 
Hansson, 1989, 1990).

Photosynthetic and respiratory 
activities of periphytic algal communities 
change from shallower to deeper zones in 
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response to changes in physical variables, 
including light intensity, radiation spectra, 
and water temperature at the bottom of the 
littoral zone (Hill, 1996; DeNicola, 1996). 
The changes in these physical conditions 
also could largely explain differences in the 
dominant species, biomass of periphytic 
algal communities (Kairesalo, 1980; Loeb & 
Reuter, 1981; Stevenson & Stoermer, 1981; 
Kingston et al., 1983; Jonsson 1987, 1992; 
Hawes & Schwarz, 1996).

Relatively few papers have been 
published on light effects on benthic algae 
and research on algal-light interactions in 
freshwater benthos is poor compared to that 
in the water column. Fewer than 20 
photosynthesis irradiance (P-I) have been 
published for benthic algae, whereas 
hundreds of P-I phytoplankton responses are 
in the literature (Richardson et al., 1983). 
Photosynthesis-irradiance relationships are 
measured for two basic reasons : i) to 
evaluate ecophysiological responses to light 
and ii) to predict in situ photosynthesis. The
present study was performed to determine 
the pattern of photosynthesis activity during 
the algal mat development in the stream 
laboratory.

MATERIAL AND METHODS
Culture of the periphyton

Algal suspension obtained by scra-

ping stones from the Garonne river was 
cultivated on ceramic tiles in a laboratory-
stream, with a medium using ground water 
medium enriched with nutrients (0.115 
NH4Cl mg.l-1, 0.022 mg KH2PO4 mg.l-1 and 
0.018 mg O3Na2Si, 5H2O mg.l-1) and 
adjusted to a final pH of 7. The medium was 
necessarily changed every two days to keep 
away from deficiency of nutrient, and the 
pilots were placed under light/dark cycle  
(15/9 hours, at 50 µmol. m-2.s-1), and at 
20 °C and at least three replicates were 
done for the photosynthesis rate 
measurements. 

Design of Photosynthetic Chamber 
Photosynthesis measurement has 

been conducted by using a rectangular 
chamber (fig. 1) of plexi-glass having length 
= 25 cm, width = 18 cm and height = 7 cm.  
This device was first described by Duff et 
al. (1984), modified by Benmoussa (1995) 
and was improved for this study. The 
volume of the incubation chamber is 
approximately of 0.8 liter, and enclosed in a  
box connected with a cryostat to maintain 
constant the water temperature. A magnetic 
stirrer was used to ensure a water circulation 
at the surface of the mat sample (about 75 
rpm). The chamber was installed under a 
lighting system, using a halogen lamp Phyto 
Claude (400 watt).
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Figure 1. Primary Productivity and Respiration Measurements : Experimental device.



46

Photosynthesis and respiration 
measurements

Every week, from 7 days to 35 days 
old culture, the oxygen evolution was 
measured under five light intensities (30, 
100, 300, 600 and 900 µmol.m-2.s-1). 
Dissolved oxygen was measured using an 
oxygen electrode YSI 5300 model inserted 
in the chamber.

The tile was immersed in the 
chamber which was filled up with water 
avoiding gas bubbles and closed : the 
photosynthesis and respiration measure-
ments were carried out immediately. The 
oxygen slope was measured with a 15 
minutes interval for different light intensi-
ties, from the lower one to the highest 
values.

The oxygen quantity being 
consumed or produced by the periphytic 
algal sample was calculated using the 
relation:
Y (mg O2.surface area-1 h-1) = [{(X* (O2)t * 

V)100-1}] (T)-1(A)-1 (1)
with:

X = Oxygen variation in % 
during incubation period
(O2)t = Dissolved oxygen value in 
water related to temperature function 
(mg l-1)
V = Volume of incubation 
chamber (L)
T = Incubation time (h)
A = Substrate surface  (m2)
The decreasing oxygen concentration 

during dark conditions was assumed as the 
respiration rate and the increasing oxygen 
concentration in light conditions was 
calculated as gross photosynthesis of 
periphytic biofilms. Photosynthesis of 
samples, as a nonlinear function  of light 
were fitted to the following equation: 

P = Pmax * I [(KI + I)]-1

(2)
where P is the photosynthesis rate, Pmax the 

maximal production rate, I the light intensity 
and KI  the half-saturation constant for light.

Biomass analysis  
The sampling was carried out every 

week during five weeks to estimate 
chlorophyll a, ash-free dry mass (AFDM), 
and the final composition of species. The 
chlorophyll a and ash-free dry weight were 
analyzed by scraping a tile and suspending 
the matter in 50 ml of distilled water. This 
suspension was immediately homogenized 
by using a mixer (Ultra-Thurax) and 
concentrated (10 mL)   using  a   refrigerator 
centrifuge (1200 rpm at 4 °C during 20 
minutes). After removing the supernatant 
solution, chlorophyll was extracted with 
acetone 90 % (10 mL), placed in a flask and 
stored in the freezer approximately 24 
hours. The pigment content was estimated 
by using the spectrophotometer methods 
proposed by Scor-Unesco (1966) and 
modified by Jeffrey & Humphrey (1975). 
The algal biomass was dried at 80 °C during 
12 hours to estimate the dry weight and then 
burned (550 °C during 1 hour) to calculate 
ash-free dry weight and to deduce organic 
matter (loss on the ignition) from the weight 
without ashes; the results are expressed in g 
m-2.

RESULTS

Photosynthesis rates were measured 
for biomass accumulation ranging 
respectively from 34 to 58 mg Chl.a m-2, 13 
to 32 mg Pheopigment. m-2 and 3 to 21 g 
AFDM. m-2 . The photosynthesis rate 
linearly increased with biomass develop-
ment until 21 days (age) and next decreased 
with higher biomass (Fig.2). The communi-
ties were dominated by Stigeoclonium,
Diatoms and Lyngbya genera’s (about 45%, 
35%, and 20% respectively).
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The photosynthesis -  light relations-
hips   (represented   by     saturation model, 
equation 2) show that the photosynthesis 
rates increased nonlinearly during the algal 
development (from 7 to 35 days) (Fig.3). 
The variation of photosynthesis-light 
relationships versus algal mat developments 
showed that :

- the value of Pmax increased from 
310 to 500 mg O2.m

-2.h-1, but 
appeared to be quite constant if 
expressed per chlorophyll a unit 
(about 9 mg O2.mgChl.a-1.h-1),

- the value of KI increased gradually 
from 70 to 110 µmol.m-2.s-1 with 
periphyton age (Fig.5)

and the respiration rate increased with both 
chlorophyll a and surface units, from 0.7 to 
1.4 mg O2.mg Chl.a-1.h-1, and from 26 to 80 
mg O2.m

-2.h-1 respectively.
According to the age of the 

periphyton sample (Fig 3 and 4), the highest 
production rate occurred at 21 days (about 
400 mg O2.m

-2. h-1) and the lowest one was 
measured for a one-week old sample (about 
259 mg O2.m

-2. h-1) while the respiration 
rate increased gradually with age and 
biomass. Taking into account the age of the 
periphyton sample, the respiration rate 
represents 9 % of gross photosynthesis rate 
for a young community compared to 21 % 
for a 35 day old periphyton sample.
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Figure 3. Photosynthesis Curves for Algal Mats Aged from 7 to 35 days.
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Figure 2. Biomass and Net Production Values Versus Age of Algal Mat.
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DISCUSSION

Because photosynthesis responds 
quantitatively to changes in light, 
environmental variation in its quantity and 
quality potentially accounts for much of 
variation in the physiology, population 
growth and community structure of benthic 
algae (Hill, 1996). 

Several authors (Sand-Jensen & 
Revsbech, 1987; Boston & Hill, 1991; 
Dodds, 1991; Graham et al., 1995; Hill, 
1996) have reported the changes of 
photosynthesis rate of algal periphyton 
versus the variation of light intensities. 

However, the relationships between 
biomass, photosynthesis and respiration 
rates during the development of the 
periphyton mat is largely unexplored. This 
study points out that the pattern of 
photosynthesis rate is closely related to the 
variation of thickness of the mat, with some 
border values for biomass (up to 58 mg.m-2

for chlorophyll a, 27 mg.m-2 for 
phaeopigment, and 12.5 g.m-2 for AFDW) 
after the which there is no increase of gross 
photosynthesis while the respiration is 
clearly related to the age.

This means that there is a self-
shading effect induced by a dense matrix so 
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Figure 4. Maximal Photosynthesis (Pmax) and Respiration (Res) Evolution Versus Age of  
Algal Mat.
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that a stronger photosynthesis reduction may 
be expected for biomass values  upper   than
in these experiments. In natural habitats, this 
phenomenon, linked to the growth of the 
mat, is combined to other aspects as the 
consequence of dislodging or the grazing 
effects (McCormick & Stevenson, 1991; 
Feminella & Hawkins, 1995; Steinman, 
1996). Moreover, high water turbidity level 
or inorganic sedimentation in the river has 
also an effect on photosynthesis (Yamada & 
Nakamura, 2002).

In this study, all of algal growth 
stages showed a good relation between 
photosynthesis and light intensity and a 
photo-inhibition effect was not observed on 
both younger and older algal substrates. Hill 
& Boston (1991) indicate that a strong 
inhibition would occur when light intensities 
exceeded 1,100 µmol m-2 s-1 for 2 h at least 
for early stages of development. In addition, 
Hill & Boston (1991) produced (C14 uptake) 
photosynthesis-irradiance curves for four 
developmental stages from three stream 
locations that differed in canopy cover, and 
found that the photo-inhibition in the 
periphyton from the two shaded sites 
declined with development, indicating that 
self-shading significantly influenced 
photosynthesis in older communities. Self-
shading caused by the vertical accumulation 
of biomass could protect underlying cells 
from photo inhibition and may increase the 
amount of light required for saturation of 
community photosynthesis. Conversely, the 
self-shading within the periphyton matrix 
may induce phenotypic or genotypic photo 
adaptation to low light. The photo 
adaptation to low light commonly induces a 
decrease in saturation intensities and an 
increase of quantum efficiencies (Prézelin, 
1981; Falkowski, 1981). 

In this study, Pmax (maximum 
photosynthesis rate) linearly increased with 
biomass up to 21 day old, dark respiration 
rate strongly increased at 35 days, and KI 
slightly increased up to 35 days (Fig.4). The 
change of those parameters with the age of 

substrate shows that the biomass and 
community structure are two important 
components that determine the net primary 
production of the periphyton community in 
a lotic system (Stevenson et al., 1996). 
Richardson et al., (1983), reported that the 
compensation point (Ic) and the irradiance 
maximum (I max) can change depending on 
the species composition of the periphyton 
and also change the light requirements for 
photosynthesis (Sheath, 1984). 

As attached microorganism, 
periphyton vertically grows on the substrate 
as a complex matrix community. Thus, the 
change of physical structure of periphyton 
during their growth alters the environmental 
conditions within the matrix and influences 
the growth of cells and their rates of primary 
production and nutrient uptake. The light is 
attenuated by the vertical matrix of algal 
cells and inorganic particules. Self-shading 
and other aspects of development in a 
matrix seem to be important determinants of 
periphyton P-I relationships (Boston & Hill, 
1991), and taking into account the results 
obtained in this study, explain the gradual 
increase of KI as the algal mat grew.

Other cumulated effects on the 
photosynthesis parameters have been 
reported: self-shading would reduce KI and 
Ic twofold for Potamogeton epiphytes 
(Sand-Jensen & Revsbech, 1987), and it 
appears to have dramatic effects on the 
slope biomass/Photosynthesis curve of 
Phragmites epiphytes (Meulemans, 1988), 
to cause a strong decline in  Chlorophyll 
(chlorophyll-specific alpha) and biomass-
specific Pmax (Hill & Boston, 1991). Paul 
and Duthie (1989) reported that 
development lowered saturation intensities 
for both individual cells and communities. 
Other studies have suggested functional 
adaptation to light within the periphyton 
matrix based on comparison of 
photosynthetic pigment ratios in overstory 
and understory cells (Hudon et al., 1987). 

The set of data of this study is 
consistent with these previous results: the 
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variations of the parameters related to the 
photosynthesis model obviously indicate 
that a high density bio-film requires higher 
light intensity for saturation production than 
a lower density community, with a loss due 
to respiration increasing gradually with age. 
The respiration rate (from 9 to 20 % of 
Pmax) is of the same range of those of 
phytoplankton. However, abundant 
heterotrophs that are usually associated with 
benthic algae cause values to be higher than 
those measured in communities with fewer 
heterotrophs (McIntire & Phinney, 1965). 
Even it can be stated that the heterotrophs 
are increasing with algal mat age, in this 
study, because medium is mineral, the part 
of heterotrophs must remain low ; this is not 
the case of natural communities which are 
submitted to nutrient conditions including 
organic compounds able to enhance the 
growth of heterotrophs. 
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