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Summary 
 

The transformation of land use in the tropics has received major attention in the last decades 

due to the rapid loss of tropical forests. In particular, large forest areas have been deforested 

and turned into agricultural lands. In addition to deforestation, unsustainable timber 

extraction, among others, led to forest degradation. In fact, deforestation and forest 

degradation have considerably contributed to global CO2 emissions. Monitoring land use 

systems and remnant forests in areas of transformation is therefore important, particularly 

within tropical rainforest landscapes. Such monitoring provides information such as the 

spatial distribution of land use systems, land use change, and also the quality of the 

ecosystem over the landscape (e.g. habitat quality, forest carbon stock, etc). This 

information could be a baseline for respective stakeholders to take action on sustainable 

landscape management. For this purpose, the use of remote sensing data plays a major role 

on land use monitoring due to spatially explicit measurements of the ground surface over 

large areas as well as the ability to measure repetitively. The combination of these data with 

sample-based field data can reduce the time and cost of field inventory.  

This study took place in Jambi province, with a total area of around 4.9 Mha, which is one 

of the hot spots of land use transformation in Indonesia, primarily in regard to forest 

conversion. To understand the historical land use change within study area, this study aims 

to analyze land use transformation in the period of 1990-2013 and the temporal dynamics 

of land use fragmentation. Some potential factors related to deforestation were also 

analyzed. As the amount of high spatial resolution images increases, it is expected that such 

images could provide better information of the ground surface with smaller minimum 

mapping unit. This will further facilitate efforts to identify the expansion of tree crops and 

remaining forests at finer scale. In this study, the applicability of high resolution RapidEye 

images was evaluated to classify land use systems and predict forest variables combined 

with field inventory data. 

The analyses of land use transformation were conducted using time-series of land use maps 

from 1990, 2000, 2011, and 2013, which were generated by visual interpretation of multi-

temporal Landsat images. The results show that, over the period from 1990-2013, the net 

decrease of primary forests was about 38.2 % (from 1.34 Mha to 0.83 Mha) and of 

secondary forests was about 30.9 % (from 0.92 Mha to 0.64 Mha). Primary forests were 

mainly converted into secondary forests and the existing secondary forests in 1990 were 
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mainly converted into rubber and oil palm plantations. For secondary forest areas, a 

considerable reduction of the mean patch size (from 4,034 ha to 2,269 ha) was observed, 

indicating an increase of forest fragmentation. 

In regard to deforestation, lowland forests were most affected due to easier accessibility. 

By analyzing the factors potentially related to deforestation, this study found that rubber 

and oil palm productivity, among other socio-economic factors, were the most relevant. 

The rate of forest loss, referring to primary and secondary forest loss, had decreased within 

the three different periods of 1990-2000, 2000-2011, and 2011-2013. Throughout the study, 

it was evident that the loss of primary forests in the Jambi province decreased considerably 

in the last period, from 2011 to 2013, at around 535.4 ha/year. This remarkable decrease 

indicates a positive impact of the first phase of the forest moratorium policy in the period 

of 2011-2013. However, the loss of secondary forests was much higher in the same period, 

at around 11,594.2 ha/year. This could be due to the exclusion of secondary forests from 

the forest moratorium and, thus, need to pay more attention to protect secondary forests 

from further loss. 

For the study of land use classification in 2013 using RapidEye image, object-based 

classification approach was implemented. This approach consists of two steps: image 

segmentation and image classification. Image segmentation is a crucial step because objects 

that are produced from this step are used as inputs for further classification and, thus, impact 

the accuracy of the image classification. An operational method to obtain optimum image 

segmentation was evaluated in this study. In this regard, Hoover metrics was used as the 

guidance; metrics were calculated from the comparison between segmented objects 

produced by different parameter settings of segmentation algorithm and the reference 

objects. The optimum image segmentation was then selected based on the trade-offs 

between the over-segmentation score and the correct detection score. In this study, the 

optimum image segmentation was selected from the resulting comparison, as it had high 

score of over-segmentation while still maintaining correct detection. 

The selected optimum image segmentation was then used as the input for image 

classification. Classification was conducted using random forest classifiers and was 

validated using ground truthing data. The land use map produced high accuracy in 

determining the secondary forests and tree crops. The user’s accuracies of secondary forest, 

rubber land, and oil palm plantation were 76.8 %, 84.6 %, and 91.7 %, respectively. The 

producer’s accuracy of secondary forests was 89.2 %, while it was low for rubber land and 
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oil palm plantations, at 48.9 % and 56.1 %, respectively. Therefore, the spatial distribution 

of tree crops plantations provided by the map is reliable with high user’s accuracy; 

however, the area can be lesser than existing area due to low producer’s accuracy. The 

confusion that occurred in the classification of rubber land was due to the complex 

background where rubber trees, depending on the management status, are grown with 

grasses and other woody vegetation. This confusion was also found for the classification of 

oil palm plantations, which was due to the presence of grasses among young oil palm 

plantations. 

Another study in this thesis combined sample-based field inventory and high spatial 

resolution RapidEye images. This study aims to identify the applicability of RapidEye 

images on the prediction of forest variables in a complex tropical rainforest (i.e. Harapan 

rainforest). The key variables to be predicted were above-ground biomass, basal area, 

quadratic mean diameter, and stand density. The model prediction was conducted using 

multiple linear regressions by linking the values of forest variables with predictor variables 

generated from RapidEye images. The proposed approach produced predictions of the 

above-ground biomass, basal area, and quadratic mean diameter with a coefficient of 

determination (R2)/relative RMSE (𝑅𝑀𝑆𝐸𝑟) of 0.73/26.8 %, 0.62/25.9 %, and 0.55/18.9 %, 

respectively. However, the prediction of stand density was low, with an R2/𝑅𝑀𝑆𝐸𝑟  of 

0.29/40 %. Regionalized maps of above-ground biomass, basal area, and quadratic mean 

diameter were then produced with the derived models. This information can be useful to 

support the efforts of forest conservation and restoration within the Harapan rainforest, for 

example by identifying priority areas for action.  
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 Chapter 1 
General Background 

 

 

1.1. Tropical rain forest and deforestation 

Transformations of land use systems are among the most important factors causing the 

alteration of the global environment (Lambin et al., 2001; Wyman & Stein, 2010). The 

practices of land use conversion from natural landscapes into other uses to meet human 

needs, such as agricultural landscapes, have greatly transformed large portions of the 

earth’s surface (Foley et al., 2005). In particular, the clearance of forests in the tropics 

located across the Amazon, the Congo Basin, and Southeast Asia had reached 227 Mha by 

2010, an estimation of annual deforestation rate of 3.8 Mha between 1950 and 2010 (Rosa 

et al., 2016). 

Tropical rain forests act as sources of carbon dioxide (CO2) due to biomass burning, 

decomposition, and deforestation or as sinks of CO2 (Malhi & Grace, 2000; Malhi & 

Marthews, 2013). Absorption of CO2 take places during the process of photosynthesis 

(Marcus, 2009). Thus, a great number of green plants in the tropical rain forest play an 

important role in the context of the global carbon cycle. These tropical rainforests store 

extensive carbon stocks in living biomass, dead wood, litter, and soils; in particular, 

lowland rainforests are able to store an above-ground biomass of 200-600 tons/ha (Ghazoul 

& Sheil, 2010). Apart from this, tropical rainforests found in Central and South America, 

Africa, and Southeast Asia also host almost half of the world’s biodiversity (Alonso et al., 

2001).  

The FAO (2015) reported that forest carbon stocks have globally declined in the last 25 

years by around 17.4 Gt due to deforestation and forest degradation. However, these carbon 

stock losses decreased from about 1.2 Gt per year in the 1990s to 0.4 Gt per year between 

2000 and 2010, and to 0.2 Gt per year between 2010 and 2015. In 2008, massive 

deforestation and forest degradation contributed 12 % of the global CO2 emissions (Van der 
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Werf et al., 2009). In all of the tropics, more than 55 % of intact forests and 28 % of 

disturbed forests were converted into agricultural land between 1980 and 2000 (Gibbs et 

al., 2010). However, the drivers of forest loss were different in the three largest rainforests 

located across Latin America, Africa, and Southeast Asia. The neotropics rainforests are 

mostly converted to pasture, as there is a long tradition of cattle ranching in Latin America 

(Hargrave & Kis-Katos, 2013; Whitmore, 1998). In Africa, the rainforests are 

predominantly threatened by cattle grazing, fire, agriculture, and a high demand for 

firewood (Ghazoul & Sheil, 2010; Hosonuma et al., 2012). These threats in Africa mainly 

originate from poverty and population growth (Corlett & Primack, 2011). In Southeast 

Asia, the expansion of tree crop plantations and timber industry is apparently the major 

driver of forest loss (Stibig et al., 2014) .  

Timber produced by dipterocarp forests in Southeast Asia is generally straight and light, 

which results in a high demand of dipterocarps for a low-cost construction and plywood 

industry (Corlett & Primack, 2011). Timber extraction is typically done by harvesting large, 

commercial trees and by leaving behind the smaller, non-commercial species; therefore, 

these forests have become severely degraded (Edwards et al., 2011). These degraded forests 

are then allowed to be cleared for agricultural land (Koh & Wilcove, 2008). In Malaysia 

and Indonesia, these clearings have made possible the establishment of economic tree crops 

like palm oil which have put the surrounding forests under pressure (Casson, 2000; 

Kartodihardjo & Supriono, 2000; McMorrow & Talip, 2001). Koh & Wilcove (2008) 

estimated that the expansion of around 56 % of oil palm plantations (about 1.7 Mha) in 

Indonesia came from lands where primary and secondary forests, as well as forest 

plantations, were converted. 

1.2. Forest loss in Indonesia 

From the facts that have been mentioned above, deforestation is a major issue in the tropics. 

Indonesia was recently reported as the second highest of annual forest loss in the period of 

2010-2015 after Brazil’s (FAO, 2015). The study on primary forest loss from 2000-2012 

across Indonesia, conducted by Margono et al. (2014), revealed that the loss of primary 

forests, including intact and degraded forests, increased considerably from 2001 to 2012, 

as depicted in Figure 1.1 In total, they estimated that the primary forest loss from 2000 to 

2012 was around 6.02 Mha, which corresponds to about 6.1 % with annual forest loss of 

about 0.5 Mha (i.e. forest cover decreased from 98.4 Mha in 2000 to 92.4 Mha in 2012). 
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Large-scale forest loss in Indonesia has occurred since the 1980s when deforestation was 

around 10 % with annual deforestation of 1.2 Mha (i.e. from 121.7 Mha in 1980 to 109.5 

Mha in 1990) (WRI, 1994). This long history of deforestation in Indonesia was mainly due 

to some government-sponsored programs like transmigration, the development of timber 

industries, and estate crops (The World Bank, 1994). 

 

Figure 1.1. Annual loss of primary (intact and degraded) forests in Indonesia between 2001 
and 2012 (Margono et al., 2014). 

The aim of the transmigration program is to relocate people from the highly-populated 

islands of Java, Bali, Madura, and Lombok to other islands like Sumatra, Kalimantan, 

Sulawesi, Mollucas, Nusa Tenggara, and Papua (Hoppe & Faust, 2004). According to 

Fearnside (1997) and Ghazoul & Sheil (2010), the program offers transmigrants the 

opportunity to earn money not only through independent smallholder farming, but also 

through employment in industrial plantation forests. For example, 100 estates of plantation 

forests were proposed to be established in 1992 and it was necessary for each estate that 

received the concession to provide houses and other infrastructures for around 300 

transmigrant families (Fearnside, 1997). However, it was subsequently found that the 

industrial plantation forest had caused the loss of forest. For the establishment of plantation 

forests, the companies were encouraged to plant in grassland areas that were commonly 

grown with Imperata cylindrica. However, these areas were mostly distributed in small 
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patches and consequently encouraged companies to clear the logged forests around the 

patches. 

Logging concessions contributed to forest loss and degradation due to unsustainable timber 

extraction. The corresponding logging activities did not actually result in direct 

deforestation as they were done selectively and considered commercial species and stem 

sizes. Thus, the logged forests do finally remain forests. Nonetheless, there was a policy in 

Indonesia in 1990 stating that if the volume of a forest’s timber was below 20 m3ha-1, it was 

classified as conversion forest and was allowed to be cut down for other plantation activities 

(Fearnside, 1997). Accordingly, the companies were motivated to log destructively and 

applied contracts for industrial plantation forest projects in the same land (A. Hadi 

Pramono, quoted by Fearnside, 1997). In other cases, the degraded logged forests were also 

converted for agriculture use (e.g. oil palm plantations) (Kartodihardjo & Supriono, 2000). 

This practice of converting forests into tree-crop plantations, particularly rubber and oil 

palm, has been of high concern in Indonesia for many years (Feintrenie & Levang, 2009). 

The expansion of rubber and oil palm has brought Indonesia as one of the largest producer 

for both crops. Figure 1.2 and Figure 1.3 depict the trend of rubber and palm oil production 

in Indonesia among the three largest global producers.  

 

Figure 1.2. Countries with the largest rubber latex production (FAOSTAT, 2016).  
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Figure 1.3. Countries with the largest palm oil production (FAOSTAT, 2016).  

The land use practices of agricultural expansion through the destruction of tropical forests 

threatens forest ecosystem functions and services like the conservation of biodiversity, 

resources of freshwater and forest resources such as large forest carbon stocks (Foley et al., 

2005; Whitten et al., 2000). It further spurs habitat loss and fragmentation and, therefore, 

the loss of biodiversity (Hannah & Lovejoy, 2011; Pimm & Raven, 2000). 

Given that Sumatra is a considerable hotspot of biodiversity which includes over 10,000 

different species of vegetation, 201 mammal species, and 580 bird species (Whitten et al., 

2000), the loss of habitat drives dramatic losses of biodiversity (Drescher et al., 2016). In 

addition, the land use change and forest loss also produce remarkable emissions of CO2 and 

affect global climate change. For instance, the emissions from deforestation and forest fires 

in Indonesia were found to be five times higher than those from non-forestry sectors 

(around 2,563 MtCO2e from forestry sectors and around 451 MtCO2e from non-forestry 

sectors) (PEACE, 2007). 

1.3. International and national concern over forested landscape management  

The loss of forests, which contributes to GHG emissions and, therefore, global climate 

change, has become a major concern regarding the management of forested landscapes. In 

order to tackle global climate change, the United Nations Framework Convention on 

Climate Change (UNFCCC) was established in 1992. The objective is “…to achieve, in 
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accordance with the relevant provisions of the Convention, stabilization of greenhouse gas 

concentrations in the atmosphere at a level that would prevent dangerous anthropogenic 

interference with the climate system” (UNFCCC, 1992). In 1997, the Parties to the 

Convention adopted the Kyoto Protocol which is a legal instrument to achieve the 

objectives of the Convention (Oppenheimer & Petsonk, 2005; UN, 1998).  

The Kyoto Protocol required industrialized countries to decrease their greenhouse gas 

emissions. However, the issue of reducing deforestation was absent from the protocol. 

Nevertheless, the post-Kyoto negotiations considered a mechanism to reduce deforestation 

(Hannah & Lovejoy, 2011). It is known as Reducing Emissions from Deforestation and 

Forest Degradation (REDD), which then developed into REDD-plus (REDD+) at the 13th 

Conference of the Parties (COP) in Bali in 2007 (Butt et al., 2013). In 2015, the COP 21 in 

Paris continuously encouraged the parties to take action on REDD+ implementation, as 

mentioned in the Article 5.2 of the Paris Agreement (UN-REDD, 2015). The main concept 

is that developed countries compensate developing countries through a carbon market and, 

thus, developing countries are encouraged to implement the following five activities 

(Peskett, 2013): 

1. Carbon emissions’ reduction from deforestation, 

2. Carbon emissions’ reduction from forest degradation,  

3. Forest carbon stocks conservation,  

4. Sustainable forest management, and  

5. Forest carbon stocks enhancement.  

An implementation of forest conservation and management would also enhance 

biodiversity preservation as an immediate side-effect. According to Thompson et al. 

(2009), biodiversity is either related to species richness that exists in particular locations or 

habitat quality provided by certain ecosystems. In order to preserve the global biodiversity, 

the COP 10 of the Convention on Biological Diversity (CBD) which was held in 2010 in 

Nagoya, Aichi Prefecture, Japan, adopted the Strategic Plan for Biodiversity for the period 

of 2011-2020 through its Aichi Biodiversity Targets (CBD, 2010). The fifth of these targets 

aims to reduce the loss of natural habitats by 2020, including forests, by 50 % and, if 

possible, by 100 % (CBD, 2013). To deal with deforestation and forest degradation, the 15th 

target also highlights ecosystem conservation and restoration, by restoring of at least 15 % 

of degraded land by 2020 as the degradation and fragmentation of habitats leads to global 
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biodiversity loss. Both targets are also in line with the 15th Sustainable Development Goal, 

which underlines the implementation of sustainable management of forests, restoration of 

degraded forest, reduction of deforestation, as well as increasing afforestation and 

reforestation, by 2020 (UN, 2015). 

Considering all these concerns, the perseveration of remaining forests should be of high 

priority. Indonesia implemented a forest moratorium, initiated by the Presidential 

Instruction 10 of 2011 to halt deforestation. This initial directive was applied for two years 

during the period of 2011-2013, followed by the second phase for the period of 2013-2015, 

and the third phase which was currently extended for the period of 2015-2017. The forest 

moratorium aims to suspend new concessions in primary forests and peatlands, excluding 

the following conditions: (1) the new concessions that had already received permission; (2) 

if the area is needed for national projects including geothermal, oil and gas, electricity, rice, 

and sugarcane fields; (3) if the current concessions need an extension, as long as their 

permissions have not expired; and (4) if the area is used for ecosystem restoration. In 

particular, for the second point (2), a conflict of interest from different sectors could hinder 

the effectiveness for the forest moratorium. 

For the program to succeed, it is necessary to know the spatial extent of the forest 

moratorium, which is then translated into to the moratorium map. This map is updated 

every six months. To ensure the effectiveness of the moratorium, high accuracy spatial 

references of land use maps and forest designation maps including up-to-date permit 

information of concessions are needed (Murdiyarso et al., 2011). Nonetheless, the 

boundaries of forest and other land uses are still questioned in Indonesia due to the various 

and overlapping boundaries created by multiple ministries, such as the Ministry of Forestry, 

the Ministry of Agriculture, the Ministry of Energy and Mineral Resources, and the 

National Land Agency (Wibowo & Giessen, 2015). For instance, the existence of 

settlements within forest area due to overlapping borders among forest estates 1 

administered by the Ministry of Forestry and other land uses in which the land ownership 

is administered by the National Land Agency. According to a report by the Consortium of 

Agrarian Reform, there were at least 30,000 villages found within forest areas (KPA, 2012).  

                                                        
1  Forest estate (Kawasan Hutan) refers to the areas that are officially administered by Indonesian Ministry of 
Forestry. These forest estates do not necessarily have actual forest cover (Enrici & Hubacek, 2016).  
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In another case, the inconsistent forest areas within the maps produced by Ministry of 

Forestry and Ministry of Environment were also shown by the Presidential Working Unit 

for Supervision and Management of Development (UKP4) during the Cabinet Meeting on 

December 23rd, 2010 (REDD-Monitor, 2012). This issue prompted a directive from 

President Yudhoyono, i.e. the sixth Indonesian President, to produce one map as a national 

reference (Samadhi, 2013). In 2011, the Indonesian government initiated the ‘One Map 

Policy’ through Law 4 of 2011. The One Map Policy focuses not only on the forestry sector 

but also on other sectors which include different topics related to agriculture, economics, 

hazards, cultural heritage, mining, transportation, and others. The scope of the activities 

within the One Map Policy is a compilation, integration, and synchronization of thematic 

maps from 19 ministries/agencies and local governments from 34 provinces (BIG, 2016). 

This compilation involves collecting data from thematic maps of each respective ministry 

and agency. These maps are then integrated with a standard base map at the scale of 

1:50,000 which are produced by the Agency of Geospatial Information (BIG). All of the 

integrated maps are then synchronized for any issue concerning an overlapping land use 

designation. These high-accuracy maps produced from the One Map Policy process will 

provide better information for land-use planning, policy planning and decision-making 

processes. However, since the Presidential Instruction 10 of 2011 gives higher priority to 

the energy sector and to food security over the forest moratorium, the disagreement over 

land use designation may potentially come from the Ministry of Forestry, Ministry of 

Agriculture, and the Ministry of Energy and Mineral Resources. With these various sectors 

involved, integrating the aforementioned thematic maps may face many obstacles due to 

disagreements over land use designation coming from these different agencies/ministries 

(Wibowo & Giessen, 2015).  

In this regard, a serious commitment to accomplishing this program can still be expected 

from the current government. President Joko Widodo issued Presidential Regulation 9 of 

2016 in order to accelerate the implementation of the One Map Policy. Timeline and the 

goals of respective institutions were structured through this regulation. The integration and 

synchronization of 85 thematic maps is targeted to be finished in 2019 (BIG, 2016). To 

achieve the target, each region in Indonesia was given individual precedence (GoI, 2017). 

In 2016, the priority of finalization stage was delegated to Kalimantan, followed by 

Sumatra, Sulawesi, Bali, and Nusa Tenggara for the year of 2017. The finalization for 
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Papua and Maluku is expected in 2018. Lastly, the finalization for Java is expected to finish 

in 2019. In 2016, 71 out of 79 thematic maps had been integrated for Kalimantan.  

1.4. Scope of the study 

1.4.1. The EFForTS project  

This study is part of the Ecological and Socioeconomic Functions of Tropical Lowland 

Rainforest Transformation Systems in Sumatra, Indonesia (EFForTS), and, in particular, 

for Jambi province. It is a Collaborative Research Center 990 (CRC 990) project funded by 

the Deutsche Forschungsgemeinschaft (DFG), which is a collaboration between Georg-

August-University, Göttingen, Germany, and three Indonesian universities (Bogor 

Agricultural University, Jambi University, and Tadulako University). Detailed information 

about the project can be found with the following link: https://www.uni-

goettingen.de/en/about-us/413417.html. In general, the project aims to provide scientific 

knowledge about environmental processes, biota, and ecosystem services, as well as human 

dimensions of forested tropical landscapes where ongoing transformations of land use 

systems are caused by the expansion of agricultural systems.  

1.4.2. Justification of the research 

Jambi province, which is located on the Sumatra Island, was found to experience the largest 

deforestation during the period of 2011-2012, with a rate of 65,734.2 ha/year, compared to 

the other provinces located in Sumatra, which have deforestation rates between 1,085 and 

46,395.9 ha/year (MoF, 2014). How to conserve forest ecosystems and the services they 

provide, while still improving food or further agricultural production, is sustainability’s 

main challenge (Lambin & Meyfroidt, 2011). Therefore, understanding the transformation 

of tropical forested landscapes into the current state of mosaic landscapes is necessary to 

support better planning on sustainable landscape management.  

Monitoring land use systems within a landscape is now essential in providing information 

for historical land use change analyses, and, in particular, information concerning the 

causes of deforestation over time. Such information would be helpful for supporting land 

use planning and sustainable management practices in forested landscapes. For instance, 

an action to protect areas with high deforestation due to agricultural expansion will help to 

sustain the forested landscape. Satellite images are essential tools for monitoring changes 

in forest cover and delivering reliable estimates of forest carbon stocks and associated 

https://www.uni-goettingen.de/en/about-us/413417.html
https://www.uni-goettingen.de/en/about-us/413417.html
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changes (GOFC-GOLD, 2013). Nowadays, a number of the remote sensing data acquired 

from different satellite sensors have been considerably developed with much higher spatial 

and spectral resolution. These remote sensing data can cover huge areas and, thus, reducing 

much fieldwork effort and time. Additionally, the ability to capture repeated information 

from the same surface helps to monitor change over landscapes.  

There have been several studies conducted in Indonesia that have used remote sensing data 

to monitor deforestation as a consequence of land use transformation (Broich et al., 2011a; 

Broich et al., 2011b; Hansen et al., 2009; Margono et al., 2012, Margono et al., 2014). 

However, these studies have mostly been done either at national level or on some selected 

islands like Sumatra and Kalimantan. For the Jambi province, there was only one study 

conducted by Ekadinata & Vincent (2011) who analyzed land use transformation using 

remote sensing data in a district located in Bungo district. Until now, there has been no 

study of land use transformation on a provincial level in Jambi, where the expansion of 

typical tree crop plantations (i.e. rubber and palm oil) occurs intensively and forest lands 

are under much pressure. In this regard, further scientific knowledge on such a study will 

support the respective stakeholders (e.g. national and local administration) to take measures 

towards better landscape management. 

Since tree crops are a major cause of deforestation, their mapping within the study area is 

essential for monitoring because mapping tree crops gives information on their expansion 

and spatial distribution. In relation to deforestation, this information can be a baseline for 

land use planning to further reduce deforestation when the expansion of tree crops comes 

at the expense of forest. On the larger scale of land use/land cover mapping, satellite images 

with medium spatial resolution, such as Landsat images, were commonly used. The 

presence of high spatial resolution satellite images such as RapidEye images with a 5 m 

spatial resolution is expected to classify objects into greater detail compared to Landsat 

images with a 30 m spatial resolution. Nonetheless, it should be taken into account that 

high spatial resolution shows objects on the ground as groups of pixels with a relatively-

high spectral variability due to complex spectral responses (Blaschke et al., 2014; Rico & 

Maseda, 2012). Thus, one pixel and nearby pixels may inform different objects, though 

they represent similar objects. In this regards, an object based image analysis has been seen 

as an approach to overcome this drawback (Blaschke et al., 2014). Therefore, an object-

based classification needs to be further evaluated for the mapping of tree crops and the 

remaining forests. 
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The assessment and accurate information of the forest variables is also essential for 

developing policy decision, so that biodiversity preservation, forest conservation and 

sustainable management of forests can be achieved. Several studies on assessing forest 

variables, including above-ground biomass modelling by integrating field inventory and 

remotely sensed data, have also been done in Indonesia. However, this was conducted 

specifically in Kalimantan  (Englhart et al., 2011; Englhart et al., 2012; Wijaya & 

Gloaguen, 2009; Wijaya et al., 2010). Such a study in the Harapan rainforest that has been 

logged intensively and becomes a restoration forest is not yet assessed. Therefore, it is a 

relevant study to assess the integration of field inventory and high spatial resolution satellite 

image (i.e. RapidEye image) in order to predict the forest variables.  

1.5. Objectives  

1.5.1. Overall objective 

The overall objective of the study is on the utilization of remote sensing data integrated 

with field data to serve information on the existing land use, land use dynamics as well as 

forest variables prediction within Jambi province.   

1.5.2. Specific objectives 

According to the overall objective, there are three specific objectives: 

1. To produce analyses of land use change including the changes of spatial pattern and the 

identification of driving forces of deforestation. 

The focus was to give information on the land use transformation and the temporal 

dynamics of the fragmentation over the forested landscape through the utilization of land 

use maps between 1990 and 2013. Moreover, an investigation into the factors related to 

deforestation aimed at identifying the drivers of deforestation. 

2. To evaluate the use of RapidEye images to differentiate tree crops and the remaining 

forests within the study area. 

The focus was to evaluate high spatial resolution images for land use classification using 

an object-based approach. For the image segmentation as the first step before image 

classification, an investigation into the optimization of segmentation parameters was 

also part of the goal in this study. 



Chapter 1 General Background - Objectives 

 

 

 12 

3. To produce an assessment of forest variables in a secondary rainforest by combining the 

field inventory and remote sensing data derived from RapidEye images. 

Image features derived from remote sensing data were linked to the ground-based 

measurements. This allows an evaluation of the applicability of high spatial resolution 

images to predict the forest variables over the secondary rainforest located in Harapan 

rainforest.  



 

 
 

 

 

Chapter 2 
Materials 

 

 

2.1. Study Area 

This research was conducted within Jambi province through three different studies that 

were implemented in three different reference areas of different size. The first study 

involves historical and spatial patterns of land use transformation covering the entire Jambi 

province (4.9 Mha). The second study regards the evaluation of tree crops mapping using 

RapidEye images, which was conducted in the Harapan landscape (0.1 Mha)—an area 

consisting of some villages surrounding the Harapan rainforest concession and the 

concession itself, which is located in Jambi Province. The last study was the assessment of 

the forest variables of a secondary rainforest, which was conducted in the Harapan 

rainforest concession (0.04 Mha). The three study areas are depicted in Figure 2.1. 

According to the Statistics Bureau of the Jambi Province (BPS, 2014), the average 

temperature, average humidity, and precipitation in Jambi in 2013 was 26.8 °C, 86 %, and 

2,609.3 mm, respectively. The province’s population was around 3.3 million in 2013 (BPS, 

2014). Jambi is administratively divided into two municipalities (Jambi city and Sungai 

Penuh city), which are urban areas, and nine districts that are in rural areas. The population 

of the rural areas consists of 1) transmigrants, 2) small and large landholders who manage 

the lands with different types of timber and tree crop plantations, and other types of 

agriculture such as food crops and fruit trees (Stolle et al., 2003). 

Rubber, as the typical tree crop in Jambi, has a long history of cultivation that began in 

1904 (Feintrenie & Levang, 2009). Due to the high incomes provided by rubber cultivation, 

it attracted farmers to cultivate these trees and to grow them with food crops and woody 

trees from forest regrowth (rubber agroforests), abandoning the transformation of 
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secondary forest fallow2 from shifting cultivation of rice and other food crops to rubber 

agroforestry (Gouyon et al., 1993). However, rubber was replaced by oil palm plantations 

(Potter & Lee, 1998). This was related to the financial crisis of 1997 in Asia that led to 

decreasing prices for rubber latex on the global market and the instability of the monetary 

situation in Indonesia which triggered the farmers for new opportunities to diversification 

(Feintrenie & Levang, 2009).  

 

Figure 2.1. The location of the three study areas: 1) Jambi province, Sumatra, Indonesia, 2) 
Harapan landscape, and 3) Harapan rainforest. 

The natural forests of Jambi are mixed dipterocarp rainforests (Beukema & van Noordwijk, 

2004; Laumonier, 1997) and they are under heavy pressure (MoF, 2014). The Harapan 

rainforest, which is part of the study area, is one of the remaining secondary forests in Jambi 

province and was the first concession in Indonesia to work on ecosystem restoration3. In 

Indonesia, secondary forest is defined as forest cover where any type of human intervention 

is visible (e.g. agriculture, logging, encroachment, and also forest fires), either took place 

in the past or presently occurs. A typical of regrowth forest is found in secondary forest 

                                                        
2  Gouyon et al. (1993) described secondary forest fallow as a result of continued practice of slash-and-burn within 

natural forest. It was covered by secondary vegetation and had some patches of fallow as an area where rice and 
food crops were grown.   

3  According to Government Regulation 3 of 2008 (GoI, 2008), an ecosystem restoration concession is granted for 
60 years and can only be extended once for another 35 years. 
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(MoF, 2008; SNI, 2010). Harapan rainforest was established in 2008 and is managed by 

the PT Restorasi Ekosistem Indonesia (REKI) (Harrison, 2015). PT REKI is a Birdlife 

consortium which includes Burung Indonesia (i.e. the Indonesian NGO working on bird 

conservation), The Royal Society for the Protection of Birds (RSPB), and Birdlife 

International (Hutan Harapan, 2016).  

 

 

Figure 2.2. Illustration of a) degraded forests along a main road, and b) typical and 
relatively open secondary forest in a state of recovery within a heavily logged forest.  

The Harapan rainforest concession lies between the province of Jambi and South Sumatra 

provinces. However, this study was only conducted in the Jambi part of Harapan, which 

has an area of about 40,000 ha (103.25° E – 103.47° E, 2.04° S – 2.36° S). This forest, 

which is a lowland forests, has experienced both legal and illegal logging over the last 20-

30 years (Harrison & Swinfield, 2015). Also, a forest fire took place from 1997-1998 which 

disturbed the development of the forest, leading to large devastation of remnants woody 

a) 

b) 
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vegetation, in particular among the understory (Schmidt et al., 2015). Figure 2.2. depicts 

the current situation of Harapan rainforest. 

The elevation of the Jambi part of the Harapan rainforest ranges between 15-124 m.a.s.l. 

The topography is mainly flat and about 70 % of the forests having a ≤ 10 % slope. Mean 

annual rainfall is 2390 mm,  and biodiversity is extremely high including 302 bird species, 

56 species of mammals excluding bats, as well as about 600 tree species (Harrison & 

Swinfield, 2015). However, as the Harapan rainforest is a “protected forest island” within 

an intensively used agricultural landscape with a growing population, illegal logging, and 

the encroachment of oil palm plantations, there is considerable pressure on almost all sides. 

2.2. Historical land use maps 

Historical land use maps were available for the years 1990, 2000, 2011, and 2013. These 

maps were produced from visual interpretation of Landsat images. All of the image 

processing and visual interpretations involved in classifying the land use systems was 

carried out by the Forest Resources Inventory – Remote Sensing and GIS Laboratory of the 

Faculty of Forestry at Bogor Agricultural University (IPB) and was made available for this 

study. Further details are presented in Appendix A.1. 22 classes of land use systems were 

distinguished. An accuracy assessment with ground truthing data was conducted by IPB for 

the 2013 map. The validation points were on a 2 km square grid, considering their 

accessibility. Accessing the area was not an easy task due to complications in obtaining 

permissions. 298 ground truthing points were collected and resulted in an overall accuracy 

assessment of 78.2 %. The confusion matrix is in Appendix A.2. For this study, the 22 

classes were aggregated into nine classes as listed in the legend of Figure 2.3 and defined 

in detail in Table 2.1, Figure 2.4, and Figure 2.5 show the land use for two example sub-

regions with distinct dynamics.  
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Table 2.1. The nine land use systems used in this study. They originate by re-classifying 
the original 22 classes as used by MoF. Source: SNI, 2010, and MoF, 2008 modified. 

Land use 
systems 

Description Original classes 

Primary 
forest 

Forest cover where human interventions cannot be identified.  primary dryland* forest, primary 
swamp forest, and primary 
mangrove forest 

Secondary 
forest 

Forest cover where any type of human intervention is found, 
such as agriculture, logging, encroachment, and also forest 
fires. This class is mostly a regrowth forest.  

secondary dryland forest, 
secondary swamp forest, and 
secondary mangrove forest 

Agriculture Agricultural areas found either in dry or wetland. These are 
mostly grown with the following crops: coconut trees, durian 
(Durio sp), cassava, and duku (Lansium parasiticum).  

dryland agriculture, mixed dryland 
agricultural, and paddy field 

Jungle 
rubber 

Mostly consisting of unmanaged rubber trees where the tree 
spacing is irregular and the rubber trees’ dbh is > 10 cm.  

jungle rubber 

Rubber 
plantation 

Rubber trees with equal spacing and age are found in an 
intensive managed large plantation, while rubber trees are 
grown with other non-rubber trees in small holder plantations. 
Human interventions and tree management are evident.  

rubber plantation 

Oil palm 
plantation 

Oil palm plantations with equal spacing and age.  oil palm plantation 

Plantation 
forest 

Forests which are established by human intervention, e.g. 
timber estate, pulp and paper plantation. Plantation forests 
which are planted inside forest area administered by MoEF4 is 
part of reforestation. These can refer to IUPHHK-HTI 5  or 
IUPHHK-HTR 6 . IUPHHK-HTI refers to plantation forests 
owned by either private or government, while IUPHHK-HTR 
refers to plantation forests owned by an individual or 
community. There are also plantation forests resulting from 
reforestation/afforestation in other areas that are not 
administered by MoEF.  

plantation forest 

Shrub/bush An area that is dominated by regrowth vegetation that 
experiences succession. This area can be grown with pole-size 
vegetation having a diameter of < 20 cm, mixed of sparse 
natural trees having a height of < 5 m, and grasses or alang-
alang (i.e. Imperata cylindrica).  

shrub/bush and swamp bush 

Others The remaining classes.  airport, bare land, fishponds, 
mining, settlements, 
transmigration areas, and water 
bodies 

*”Dryland” refers to mineral soil and this term is used to distinguish it from peatland (Marlier et al., 

2015). 

                                                        
4  According to the Presidential Regulation 16 of 2015, Ministry of Forestry (MoF) and the Ministry of Environment 

(MoE) was integrated in 2015 as the Ministry of Environment and Forestry (MoEF). 
5  According to the MoEF Regulation 42 of 2015, IUPHHK-HTI stands for Izin Usaha Pemanfaatan Hasil Hutan 

Kayu dalam Hutan Tanaman Industri which is a plantation forest concessionaire for timber production in the 
Industrial Plantation Forest. 

6  According to the MoEF Regulation 42 of 2015, IUPHHK-HTR stands for Izin Usaha Pemanfaatan Hasil Hutan 
Kayu dalam Hutan Tanaman Rakyat which is a plantation forest concessionaire for timber production in the 
Plantation Forest owned by an individual or community. 
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Figure 2.3. The historical land use maps from 1990, 2000, 2011, and 2013 in Jambi 
province. In these four different points in time, the primary forests that were located in the 
eastern part of Jambi province decreased in area (Figure 2.4). In the lowland area located 
in the southern part of Jambi, the high decrease of secondary forest areas is visible (Figure 
2.5). 
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Figure 2.4. The subset of land use maps from 1990, 2000, 2011, and 2013 in the eastern 
area of Jambi province. The primary forest areas had decreased greatly due to the 
conversion into secondary forests. 

 

Figure 2.5. The subset of land use maps from 1990, 2000, 2011, and 2013 in the southern 
area of Jambi province. The secondary forest areas decreased and became fragmented.  
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2.3. Satellite images used 

In this study, RapidEye and Landsat 8 Operational Land Imager (OLI) images were used. 

RapidEye images were utilized to evaluate the tree crop mapping using an object-based 

classification and to assess the forest variables of secondary rainforest in the Harapan 

restoration concession. RapidEye images have a ground spatial resolution of 6.5 m which 

is then re-sampled into 5 m pixel size, and are composed of five multispectral bands (blue: 

440-510 nm, green: 520-590 nm, red: 630-685 nm, red-edge: 690-730 nm, and near-

infrared: 760-850 nm) (Blackbridge, 2013). In order to cover the study area, five tiles of 

RapidEye images from June 19th, 2013, were obtained. These images contain a low cloud 

cover of around 1-2 %. All the RapidEye images used in this study were made available 

through the RapidEye Science Archive (RESA) supported by the German Aerospace 

Center (DLR). 

 

Figure 2.6. Map of RapidEye images around Harapan rainforest concession (black line) 
with false color composites of red: band 4, green: band 5, and blue: band 3. 

Landsat 8 OLI images were used as materials to establish the sampling design for forest 

inventory. The use of Landsat 8 OLI images required two tiles in this study (path/row 
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125/61 and 125/62), which were available for free from the USGS website. Both tiles used 

in this study were acquired on June 27th, 2013. The Landsat 8 OLI image, excluding two 

thermal infrared bands, is comprised of nine spectral bands, having a 30 m spatial resolution 

in all except the panchromatic band, with a 15 m spatial resolution (USGS, 2016). These 

tiles contain a cloud cover of 38.77 % and 12.86 % for path/row 125/61 and 125/62, 

respectively. However, the cloud cover did not extend into the study area around Harapan 

rainforest.  

 

Figure 2.7. Map from Landsat 8 OLI images around Harapan rainforest concession (black 
line) with a false color composite of red: band 6, green: band 5, and blue: band 4. 

RapidEye (Level 3A) and Landsat 8 OLI (Level 1T) images used in this study were 

delivered as products that were geometrically-corrected and processed with a terrain 

correction based on available Ground Control Points (GCPs) and Digital Elevation Model 

(DEM). The source of GCPs for RapidEye products comes from Geocover 2000 and Global 

Land Surveys (GLS) 2000 datasets, while the DEMs are retrieved from PlanetObserver 

PlanetDEM 90 (Blackbridge, 2013). For Landsat 8 OLI, the GCPs were obtained from GLS 

2000 datasets, while the DEMs were retrieved from GLS DEM datasets (USGS, 2016). 



 

 
 

 

Chapter 3 
Methodologies 

 

 

3.1. Monitoring land use systems  

3.1.1. Analyses of land use change and spatial pattern 

Analyses of land use change were conducted to evaluate land use transitions in order to 

give insights into temporal dynamics between classes of transitions. Spatial pattern was 

also analyzed which did allow an analysis of temporal dynamics of fragmentation. Land 

use changes and spatial pattern analyses were carried out on land use maps from 1990, 

2000, 2011, and 2013 as described in chapter 2. For the purpose of evaluating land use 

change, the net change of land use systems was quantified. The net change, which can be 

presented as a net decrease or net increase, quantifies the total changes—including losses 

and gains (UNEP, 2009). As the changes of primary and secondary forests are of high 

concern, the quantification of annual gains and losses in three different periods (1990-2000, 

2000-2011, and 2011-2013) was also conducted. For the purpose to evaluate land use 

transitions, transformation matrices were analyzed.  

It is, however, insufficient to only understand the change in area from an ecological 

perspective as the change of land use is also followed by a change of landscape structure 

(Curatola Fernández et al., 2015). The disturbances that change the landscape would then 

alter the landscape’s pattern and might further impact species diversity (Franklin, 2001). 

Therefore, the change in the landscape structure was also quantified.  The quantification of 

the landscape structure provides information such as the level of habitat fragmentation, 

which is of particular interest for understanding the impact of land use transformation on 

ecological processes (e.g. biodiversity loss) (Fahrig, 2003). Landscape structures consist of 

landscape composition and configuration (Griffith et al., 2000). Of these, landscape 

composition measures the presence or extent of each land category with no information 

regarding spatial connectivity, whereas landscape configuration measures the arrangement 

or spatial distribution of features within specific landscapes (McGarigal & Marks, 1995). 

In fact, spatial pattern analyses for quantifying landscape structures have been widely 
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implemented using landscape metrics (Curatola Fernández et al., 2015; Du et al., 2014; 

Southworth et al., 2004). The quantification of spatial patterns from the historical land use 

maps in this study did allow an analysis of temporal dynamics of fragmentation. 

While a large amount of landscape metrics are provided by common software, they are 

mostly correlated (Griffith et al., 2000). In this study, two metrics were selected (i.e. mean 

patch size and aggregation index) to analyze the spatial pattern of four major land uses 

where transformation took place, i.e. secondary forest, jungle rubber, rubber, and oil palm 

plantations. The computation of these metrics was done for all different points in time (i.e. 

1990, 2000, 2011, and 2013). It was applied using the ‘SDMTools’ library in the R package 

(VanDerWal et al., 2014). Mean Patch Size (MPS) in ha was calculated for each class, 

representing a ratio of the total area for a given class and number of patches for that class. 

Small MPS for particular land use types indicates more fragmentation than larger MPS 

within a landscape (Horning et al., 2010).  

The Aggregation Index (AI) provides knowledge on the aggregation level of certain classes, 

in which a lower index value means a more dispersed and fragmented class (He et al., 

2000). The AI is a percentage of the ratio between total shared pixel edges for a given class 

and maximal shared pixel edges when the class gets clumped as one patch (He et al., 2000; 

McGarigal, 2015). According to He et al. (2000), the AI is formulated as follows: 

AIi = (ei,i/max_ei,i) x 100%             (1) 

where:  

AI is aggregation index for class i (%), 

as the AI is implemented for raster data, 𝑒𝑖.𝑖 is the total shared pixel edges among the cells 

within one class, 

max_ei,i is the maximal shared pixel edges when a particular class clumps in a one patch 

(this patch does not need to be a square). 

max_ei,i is calculated based on the following formulas, 

if m = 0, max_ei,i = 2n (n - 1), or 

if m ≤ n, max_ei,i = 2n (n - 1) + 2m - 1, or 

if m > 0, max_ei,i = 2n (n - 1) + 2m – 2.  

where:  
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n is the square root of the largest square smaller than Ai (number of pixels of class i),  

m = Ai - n
2 

For instance, as class i has 11 cells (Ai), the largest square smaller than Ai will be 9 cells, n 

= 3 and m = 2. Based on these values (i.e. m and n), the maximal shared pixel edges 

(max_ei,i) are 15. 

In order to illustrate the mean patch size and index of aggregation in different levels, the 

binary landscapes shown in Figure 3.1 are depicted, where 0 is the background (white) and 

1 is the class 1 (gray). 

                        

AI1=33.3 %, MPS1=1.8 Ha   AI1=50 %, MPS1=3 Ha  AI1=66.7 %, MPS1=9 Ha 

              

AI1=91.7 %, MPS1=9 Ha          AI1=100 %, MPS1=9 Ha    

Figure 3.1. Different spatial patterns at class 1 shown in gray (adopted from He et al., 2000). 

3.1.2. Factors related to deforestation 

In this study, deforestation includes the changes from any forest type to any non-forest type. 

In order to analyze the factors potentially driving or related to deforestation, the approaches 

of Geist & Lambin (2002) are followed. Those authors address factors causing tropical 

deforestation as a combination of underlying driving forces and proximate causes. 

Proximate causes are “direct causes”, such as agricultural expansion, timber extraction, 

infrastructure development, and other factors. Other factors consist of biophysical factors, 

slope and elevation. Underlying driving forces imply “indirect causes” like socio-economic 

factors where the terms are, of course, frequently related to proximate causes.  

a) b) c) 

d) e) 
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In this study, two different approaches were applied to analyze factors that are related to 

deforestation. The first approach incorporated topographic variables, including slope and 

elevation, taken from NASA’s Shuttle Radar Topography Mission (SRTM) with a spatial 

resolution of 30 m. The slope and elevation maps were masked with the deforestation map 

for each period (i.e. 1990-2000, 2000-2011, and 2011-2013), and the distribution of 

deforestation at different levels of slope and elevation was identified.  

The second approach analyzed socio-economic variables at district level. Socio-economic 

variables were computed as the annual change of each variable for each of the nine districts 

in Jambi province, as was deforestation as the dependent variable (Table 3.1). These socio-

economic variables were only completely available for the years 2000/2001, 2010/2011, 

and 2013; the year 1990 was not completely available.  

Table 3.1 Variables used to analyze the relationship of socio-economic factors on district 
level to deforestation rates. 

Variable Data source 
Unit per 
district 

Dependent variable:     

Annual deforestation 
Land use maps of 2000, 2011, and 
2013 

ha/year 

Independent variables:     
Population density 

Statistics Bureau of the Jambi 
province  

persons/ha 
Gross Regional Domestic 
Product (GRDP) per capita  

Rupiah  

   
Rubber productivity 

Estate crop Bureau of the Jambi 
province  

kg/ha 
Palm oil productivity kg/ha 
Rubber farmers Number 

(count) 
Palm oil farmers Number 

(count) 
 

The relationship of each factor to deforestation was estimated by simple linear regression. 

In this study, the data set of a province was considered a “population” (= all census of 

province of Jambi) and not a sample, so that p-values, significances, and other sampling 

statistics were not calculated. The model was implemented using the function lm() in R (R 

Core Team, 2015).  

𝛥𝑖 = 𝛽0 + 𝛽𝑖 · 𝑥𝑖 + 𝜀𝑖         (2) 
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where: 

𝛥𝑖 is the annual deforestation of the i-th observation where i = 1,…, n,  𝛽0-𝛽𝑖  are the model 

coefficients, 𝑥𝑖 is the predictive variable (potential driving forces), and 𝜀𝑖  is the random 

error term.  

3.2. Evaluation of the tree crops mapping using high spatial resolution images 

3.2.1. Image pre-processing 

At the satellite sensor, the reflected electromagnetic radiance of various ground surfaces on 

the earth is recorded as digital numbers (DNs) for each wavelength or spectral band  

(Lillesand et al., 2008). The spectral radiances of the ground surface recorded by a satellite 

sensor are very much dependent on the latitude, weather condition, season, time of image 

acquisition, and other factors. Therefore, the radiance’s intensity of a particular feature on 

the ground will vary when it is derived from a satellite image with different acquisition 

times, as different interactions with the atmosphere at different times will be present. In 

order to bring these radiance to a common standard, so that the same ground feature has 

the same digital number per spectral channel, radiometric correction needs to be employed.   

In this case, the atmospheric effect should be corrected in order to get meaningful measure 

of ground surface reflectance (Tso & Mather, 2009). However, such atmospheric correction 

is required depending on the purpose of the study. While this is not necessary to apply when 

land use mapping is done using a single acquisition date, it is important for change detection 

where multiple acquisition dates are used (Tso & Mather, 2009). When the atmosphere 

influence is not considered, the Top of Atmosphere (TOA) reflectance is quantified 

(Blackbridge, 2013). The value of this reflectance ranges from 0-1 or 0-100 %. For the five 

tiles of RapidEye images with the same acquisition time used in this study, the TOA 

reflectance was quantified for each tile following Blackbridge (2013). 

3.2.2. Image segmentation 

By using high spatial resolution images, the map can be produced with smaller minimum 

mapping units so that objects are mapped in more detail. It should be taken into account 

that high spatial resolution shows objects on the ground as groups of pixels with a relatively 

high spectral variability due to complex spectral responses (Blaschke et al., 2014; Rico & 

Maseda, 2012). This means that one pixel might inform different objects from nearby 
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pixels, even though they represent similar objects. Therefore, the pixel-based method for 

classification might result in low performance and produce salt and pepper effects. This 

drawback can be overcome using an approach called object-based image analysis (OBIA) 

(Blaschke et al., 2014).  

Object-based image analysis comprises the segmentation and classification of the image 

(Lillesand et al., 2008). Image segmentation aims at clustering image’s pixels into 

meaningful objects in which neighboring pixels with homogenous features are merged (De 

Sousa et al., 2012; Marpu et al., 2010). From the objects produced, the target classes (e.g. 

land use/land cover) are then assigned to a number of objects that are selected as a training 

area. Based on the training area, classification is then applied to the whole of the image. It 

is apparent that the segmentation algorithm that creates objects plays an important role in 

classification accuracy (Neubert et al., 2008). 

This study used the mean shift segmentation algorithm that has been commonly 

implemented in studies of image classification with remote sensing data (Bo et al., 2009; 

Büschenfeld & Ostermann, 2012; Kun et al., 2010; SushmaLeela et al., 2013; Yang et al., 

2013). According to Comaniciu and Meer (2002), Huang and Zhang (2008), the OTB 

Development Team (2015), and Xiao-gu et al. (2009), the mean shift segmentation 

approach is described (Figure 3.2): 

1. Firstly, the two radii of the search window, the spatial radius hs and the range (= spectral 

radius) hr, are defined in order to collect a number of pixels to further define a segment 

in the n-dimensional feature space. The n-dimensional is 2 + p, where two represents 

the spatial domain and p represents the spectral domain. The spatial radius (hs) 

represents the maximum spatial distance (in pixels) to adjacent pixels that are 

incorporated in the analysis and the range radius (hr) represents the maximum spectral 

distance included within an object representing the distance of grey level (see Table 

3.2). A larger radius produces fewer objects, as such approach is more inclusive, 

2. The mean or mass center is computed from these pixels, 

3. After the mean is determined, the central point of those pixels is shifted to the 

determined mean,  

4. This mean becomes a central point of a new window, and the mean among a set of 

pixels is iteratively calculated. This leads to continuously shifting the central point 

towards the dense pixels until it converges to the mean.  
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5. When convergence is achieved, the pixels that are associated to the last central point 

are clustered to an object. For clustering, a minimum region size (Mr) is defined to 

reduce small objects and, thus, cluster which has region size less than Mr is merged.  

 

Figure 3.2. An illustration of mean shift algorithm approach (adopted from Xiao-gu et al., 

2009). According to the defined hs and hr, a set of pixels were selected at the initial window. 

The central point of the initial window is then shifted to the mean value of this group of 

pixels becoming new central point of new window. This new central point is continuously 

shifted until it converges. 

Table 3.2 Selected parameter settings for image segmentation. 

Parameter Levels Unit 

Spatial radius (hs) 5, 10, 15  Pixel 

Range radius (hr) 0.005, 0.01, 0.015, 0.02  TOA reflectance 

Minimum region size (Mr) 10, 30, 50  Pixel 

Different compositions of segmentation parameters were determined in this study, as can 

be seen in Table 3.2. By combining these parameters, the mean shift segmentation was 

carried out using the Orfeo Toolbox (OTB Development Team, 2015).  

3.2.3. Identification of suitable segmentation parameters  

The mean shift segmentation using different parameter settings produced a number of 

segmented images. As the objects produced by segmentation parameter settings play a key 

role in the classification accuracy, criteria need to be defined to find the best segmented 

image for a given purpose and given image resolution. The selection of optimal 

segmentation parameters is a challenge (Smith, 2010). Until now, there are no standard 

approaches to quantitatively evaluate “segmentation accuracy”. Smith (2010) used SPOT 

4/5 imageries to classify six land cover classes including perennial, crop, trees, open water, 

wetland vegetation, and urban area. For image segmentation, he selected the optimum 

parameter settings by comparing different results of segmented images based on the 

classification accuracy produced by a classifier. He applied the Random Forests algorithm 

to derive the classification models for each segmented image. From these different 

classification models, the one having the lowest error rate was selected as the best 

 

initial window 

new window 
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parameter settings. Other approaches conducted by Carleer et al. (2005) and Marpu et al. 

(2010) have evaluated the selection of optimum parameter settings by comparing 

segmented images and pre-defined reference objects which were visually digitized.  

The study of Carleer et al. (2005) aimed to evaluate and compare different kinds of 

segmentation algorithms. IKONOS Panchromatic image was used in their study. Pre-

defined reference objects used as a comparison to the segmented image were derived from 

five reference images with different land use types. The extent of each reference image is 

256 x 256 m. Each reference image represents a particular land use type; one of a rural area, 

a residential area, an urban administrative area, an urban dwelling area, and a forest area. 

Each feature at each reference image was then visually delineated as reference objects, with 

a minimum object of four pixels chosen. The different segmented images produced by 

different segmentation parameter settings were then evaluated based on the percentage of 

the mis-segmented pixels of the total pixels in the segmented image and also the average 

percentage of mis-segmented pixels for every reference region. They also evaluated over-

segmentation and under-segmentation by calculating the ratio between the number of 

objects in segmented images and the number of objects in the reference, where a ratio > 1 

means over-segmentation and a ratio < 1 means under-segmentation. In their study, the 

optimum segmentation was chosen when low percentage of mis-segmented pixels was 

achieved and under-segmentation did not occur.  

The study of Marpu et al. (2010) aimed to analyze segmentation results by defining under- 

and over-segmentation. They used two scenes of IKONOS images from two different 

regions for evaluating the segmentation results.  Of these, ten reference objects were 

visually delineated for each scene. The criteria to define the reference objects were that 

they must be a distinctly separable feature and varied in land cover class, texture, form, 

contrast, and area. The reference objects covered six classes including built areas, roads, 

gardens, open areas, forest cover, and water bodies. In their study, the collection of 

reference objects was purposively selected. Comparisons between segmentation results and 

reference objects were then conducted to find optimum parameter settings through an 

evaluation of the under- and over-segmentation. When the reference object is segmented 

into different sub-objects, the percentage of the biggest sub-object, after eliminating the 

“extra pixels”, is defined as over-segmentation. “Extra pixels” are defined as the pixels of 

the sub-objects that are not overlapped with the reference object. Besides extra pixels, they 

also defined “lost pixels”. “Lost pixels” are the pixels that are found in reference objects 

but not as part of the segmented image. The percentage of extra pixels and lost pixels are 
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defined as under-segmentation in their study. In the study by Marpu et al., the best 

parameter setting was selected according to the high percentage of over-segmentation. 

However, no approaches that have been mentioned above consider the correct percentage 

of overlapping segments between the segmented image and reference objects. This metric 

is relevant to be an indicator to evaluate the segmentation. An approach that considers the 

correctly identified percentage was developed by Hoover et al. (1996) and provides a 

number of performance metrics.  These metrics are then called Hoover metrics and consist 

of over-segmentation, under-segmentation, correct detection, missed detection, and noise 

detection.  

 

Figure 3.3. Representation of the digitized reference objects (shown in the white polygon). 
The objects (from left to the right) are bare land, shrub/bush, and forest, accordingly. 

In order to select the best segmentation parameter settings, comparisons between the 

reference objects and the segmented images based on the Hoover metrics were done in this 

study. Reference objects were created from one single RapidEye tile in order to reduce the 

time required for comparing segmentations. This tile was selected because it has all 

specified land cover classes, including a large river within the study area. In regard to the 

similarity of spectral reflectance of the ground surface, this tile is comparable to the other 

four tiles used in this study due to the same time of acquisition. These reference objects 

were selected following the criteria as mentioned in Marpu et al. (2010). The selection of 

reference objects was purposively made, where all the features that were selected as 

reference objects must be distinctly separable objects. Moreover, they were distributed 

across the image as can be seen in Figure 3.4 and covered different land cover types 

including vegetated and non-vegetated area. Altogether, thirty objects were visually 

digitized (see examples in Figure 3.3).  

The calculation of Hoover metrics was conducted using the Orfeo Toolbox (OTB 

Development Team, 2015). Referring to Hoover et al. (1996), these metrics are explained 
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in the following descriptions: M is the number of objects from the segmentation algorithm 

and N is the number of reference objects. Pm is the number of pixels for each object or 

region, Rm (m = 1…M), and Pn is the number of pixels for each reference region, Rn (n = 

1…N). Then, Omn = Rm ∩ Rn denotes the number of pixels that overlap within the regions 

Rm and Rn. In case of no overlap, Omn = 0, and a perfect overlap, Omn = Pm = Pn. Thus, a M x 

N table for m = 1…M and n = 1…N is constructed, where the percentage of Omn is implicitly 

calculated for each entry. The calculation of overlapping percentages is done for each 

object in respect to the size of the object from the segmentation algorithm as Omn/Pm and of 

the reference object as Omn/Pn. The percentage is further used to define whether the region 

is classified as correct detection, over-segmentation, under-segmentation, missed detection, 

or noise. The procedures to define the metrics are strictly based on a defined threshold T, 

which shows the percentage of overlapping pixels. It means that the threshold T defines 

how strict the overlapping area which will be counted. It has been defined that the range is 

between 0.5 < T ≤ 1. The highest threshold which is 1 means that overlap area between the 

segmented image and reference object must be 100 %. In this study, a medium strictness 

where the threshold T = 0.75 was defined. To calculate each metric, the following 

definitions are used (Hoover et al., 1996): 

1. Correct detection 

Both objects of 𝑅𝑚 in the segmented image and 𝑅𝑛 in the reference are classified as 

correct detection if  

a. 𝑂𝑚𝑛 ≥ T x 𝑃𝑚 (at least T % of the pixels in 𝑅𝑚 overlap in 𝑅𝑛), and 

b. 𝑂𝑚𝑛  ≥ T x 𝑃𝑛 (at least T % of the pixels in 𝑅𝑛 overlap in 𝑅𝑚). 

2. Over-segmentation 

An object 𝑅𝑛 in the reference set and a number of objects 𝑅𝑚1
,…, 𝑅𝑚𝑥

, (2 ≤ x ≤ M), in 

the segmented image are classified as over-segmentation if 

a. ∀𝑖 ∈ x, 𝑂𝑚𝑖𝑛 ≥ T x 𝑃𝑚𝑖
 (for all i of object 1,…, x, at least T % of the pixels for all 

objects in 𝑅𝑚𝑖
 overlap in 𝑅𝑛), and 

b. ∑ 𝑂𝑚𝑖𝑛
𝑥
𝑖=1  ≥ T x 𝑃𝑛 (at least T % of the pixels in 𝑅𝑛 overlap in the union of regions 

𝑅𝑚1
,…, 𝑅𝑚𝑥

).  

3. Under-segmentation 
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A number of reference objects in 𝑅𝑛1
,…, 𝑅𝑛𝑥

, (2 ≤ x ≤ N), and an object 𝑅𝑚  in a 

segmented image are classified as under-segmentation if   

a. ∑ 𝑂𝑚𝑛𝑖

𝑥
𝑖=1  ≥ T x 𝑃𝑚  (at least T % of the pixels in 𝑅𝑚 overlap in the union of regions 

𝑅𝑛1
,…, 𝑅𝑛𝑥

), and 

b. ∀𝑖 ∈ x, 𝑂𝑚𝑛𝑖
 ≥ T x 𝑃𝑛𝑖

 (for all i of object 1,…, x, at least T % of the pixels for every 

objects in 𝑅𝑛𝑖
 overlap in Rm).  

4. Missed detection 

An object 𝑅𝑛  in the reference set that is not classified as correct detection, over-

segmentation, or under-segmentation is defined as missed. 

5. Noise 

An object 𝑅𝑚  in a segmented image that is not classified as correct detection, over-

segmentation, or under-segmentation is defined as noise. It is also part of missed 

classification. 

For each metric, the score is computed as described in Appendix A.6.  

Compared to under-segmentation, over-segmentation is preferable because objects can still 

be grouped in the post-processing when over-segmentation occurs, while one might lose 

objects when under-segmentation happens (Marpu et al., 2010). However, the advantage in 

carrying out the segmentation before classification can be lost if over-segmentation is too 

high (Carleer et al., 2005). Having a high amount of over segmentation is not the only main 

purpose of image segmentation as the correctness of segmented images also plays an 

important role for further steps of image classification. Moreover, the higher the over-

segmentation, the more time is needed for further steps towards image classification. 

Therefore, in this study, the best segmentation parameter settings were selected when the 

respective settings produced a high over-segmentation score but still performed a correct 

segmentation. A trade-off between over-segmentation and correct detection score was 

identified to select the best parameter settings of image segmentation. 

3.2.4. Training data collection 

Training data were collected on a 2.5 km square grid from a systematic sample (Figure 3.4). 

A number of regular grids with a distance of 2.5 km were established. For each grid point 

(n = 155), a square 200 m by 200 m plot was visually interpreted for land use systems for 

all segments that either fully or partially overlapped with the plots.  
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Table 3.3 Classification key for segmentation. Source: SNI, 2010, and MoF, 2008 
modified. 

Land use systems Description 

Secondary forest Forest cover where any activity due to human intervention is 
found either earlier or current event, such as agriculture, logging 
with visible logging tracks, encroachment, and also natural 
events such as forest fires. This class is mostly a regrowth 
forest. 

Jungle rubber An area that is similar to secondary forest where human 
intervention takes place and is mostly grown with unmanaged 
rubber trees where the tree spacing is irregular and the rubber 
trees’ dbh is > 10 cm.  

Rubber plantation Rubber trees with equal tree spacing and age. In small holder 
plantations, rubber trees are grown with non-rubber trees. 
Human interventions and tree management are evident. 

Oil palm plantation Homogenous plantations with equal tree spacing and age of oil 
palm. 

Shrub/bush An area that is dominated by regrowth vegetation. This area can 
be grown with pole-size vegetation having a dbh of < 20 cm, 
mixed of sparse natural trees having a height of < 5 m, and 
grasses or alang-alang (i.e. Imperata cylindrica). Home gardens 
and swidden agriculture are categorized in this class. 

Bare land  Open areas such as burnt areas, roads, and cleared areas. Roads 
were classified in this class as most of the roads were only an 
open land without asphalt. 

Settlement An area where people reside with certain infrastructure. 
Water body  Ponds, lakes, and rivers. 

 

In addition to the segments that overlapped into the plots, additional training data were 

added as the systematic sampling design yielded only few training data for more rare land 

use types like settlement and water body. To get better results from the classification model, 

training data for those classes were manually added by defining some areas that were easily 

recognized. As a result, the selection of training data was a mix of statistical sampling and 

non-statistical sampling. Some land use types that were recognized within the study area 

are described in Table 3.3. These land use types came from the same references as Table 

2.1 with a slight difference because of some aggregation classes in Table 2.1. The land use 

classes for entire Jambi province are more varied than in this study area and, thus, the 

classes here are lesser.  
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Figure 3.4. Location of reference objects, ground truthing data, and training area within 
Harapan landscape. Some examples of ground truthing data at three different plots are 
depicted. 

Local knowledge based on field observations within the study area and Google Earth 

images with higher spatial resolution in some parts of study area were used to assist during 

the interpretation of training data. As the images from Google Earth were not up-to-date, 

an adjustment was applied. For instance, if a secondary forest was identified in Google 

Earth images but was obviously shrub/bush when interpreted in RapidEye. That is the 

RapidEye image was used as reference for interpretation. In this case, it would then be 

interpreted as shrub/bush because the RapidEye images were more recent. 

3.2.5. Image classification  

The predefined training data, as previously described, were used as the input for image 

classification. In order to apply object-based classification, the Random Forests (RF) 

classifier developed by Breiman (2001) was implemented using the ‘randomForest’ R 

package (Liaw et al., 2014). This classifier is widely applied in remote sensing for 

vegetation and land use mapping (Chan et al., 2010; Chapman et al., 2010; Duro et al., 

2012; Immitzer et al., 2012; Magdon et al., 2014; Puissant et al., 2014; Rodriguez-Galiano 

et al., 2012).  
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Figure 3.5. Structure of a decision tree (adopted from Breiman et al. 1984). 

The RF classifier generates a number of decision trees and assigns the final class based on 

a majority vote within all the trees (Breiman, 2001; Liaw & Wiener, 2002). Basically, each 

decision tree consists of binary decisions that are constructed by several nodes connected 

by branches and continues to grow to reach terminal nodes where a class assignment is 

eventually achieved (Breiman et al., 1984; Horning, 2010). The structure of such an 

individual decision tree is depicted in Figure 3.5. A decision tree is grown by a process that 

randomly selects a subset of training data with replacements (so that there is no data 

exclusion for the next subset), the so-called bootstrapping (Breiman & Cutler, 2004; Liaw 

& Wiener, 2002). RF uses two-thirds of the original training data in the bootstrapping 

process and the remaining samples of training data (one-third), the so called Out-Of-Bag 

(OOB) samples, are used to estimate the error of the predicted model (Liaw & Wiener, 

2002). When growing the tree, the root node or initial node will be split into other nodes 

based on the best-splitting variable among a subset of randomly-selected predictor 

variables. The best split is defined by using the Gini Index which measures the degree of 

impurity (or purity). Through this measure, the best split of each node is defined with the 

decrease in impurity. This means that the descendant node is “purer” than the parent node 

(Breiman et al., 1984). The smallest impurity (or highest purity) occurs when only one class 

is found at a node.  

A default of two predictive variables for each split and 500 decision trees was implemented 

in this study. The number of decision trees was chosen as the gain in accuracy of the model 
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from more than 500 decision trees has been found to be generally low (Breiman and Cutler, 

2004). Overall, eight predictor variables were used here, consisting of five RapidEye’s 

bands with a TOA reflectance value of band 1 (B1), band 2 (B2), band 3 (B3), band 4 (B4), 

and band 5 (B5), the Normalized Difference Vegetation Index (NDVI) (Gamon et al., 

1995), NDVI Red-edge (NDVI_RE) (Schuster et al., 2012), and the ratio between the 

perimeter and area of each segment (PARA). For each predictor variable, the mean value 

was generated for each segment. 

In order to minimize the overfitting due to correlated predictive variables used in the RF 

model for further classification, fewer predictive variables were selected (Magdon et al., 

2014). The classification was further implemented by choosing the variables according to 

the mean decrease in accuracy derived from the RF algorithm, where the variable 

importance is measured (Liaw & Wiener, 2002). Essentially, the variable importance is 

measured from the error produced by the permutation of the OOB data for particular 

predictor variables, while other predictor variables are not altered. When the permutation 

of certain variables produces a high decrease in accuracy, it means that these variables are 

highly important. 

3.2.6. Map validation and accuracy assessment 

With the RF classifier, there is the possibility to quantify the model-based error from the 

OOB samples when predicting the model from the training data. Nonetheless, the quality 

of the produced map needs to be validated as well. A set of independent data is required for 

this map validation and such data was collected from the field. 

A stratified random sampling that also considered accessibility was implemented to collect 

the independent land use data. A buffer extending 500 m from the road was generated to 

locate the ground truthing data. Such distance was chosen due to the challenging terrain 

and land cover in some areas. For instance, there was considerable understory found in 

secondary forests, jungle rubber, unmanaged rubber plantation, and shrubs so that much 

effort is needed to reach the point. Therefore, a buffer of 500 m was expected as a relevant 

distance for reducing time spent walking to reach the validation points.  

For each land use system in the classified map, 100 sample points were randomly selected 

within the buffered area. A generation of 100 sample random points gave a chance to select 

the most accessible validation points. The validation points that were located in a 

challenging area with high risk of security due to illegal encroachment as well as limited 
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access to concessionaire properties were not taken. Among these points, a selection of 

validation points was then taken proportionally according to the extent of each land use 

system. The amount of validation points for each land use system was 50 % from the 

percentage area of land use systems. For example, if the area of forest in the study area is 

40 %, then the validation points are 20 points. To get appropriate validation points for 

smaller land use systems areas, a minimum number of 10 validation points was set up. 

As land use mapping was based on object-based classification, map validation was 

evaluated for each segment (= object) (Myint et al., 2011; Pu et al., 2011). Thus, a square 

plot of 100 x 100 m was centered at each validation point. Within this square plot, segments 

produced by the best parameter settings were superimposed. For each segment that was 

accessible, land use was observed in the field according to the classes in Table 3.3. 

However, selected plots for the secondary forest class at around twelve plots were not 

visited because those plots were located inside a forest concession with limited 

accessibility. Thus, the land use systems were defined from the visual interpretation of 

RapidEye images. The unselected points from the 100 random points that were excluded 

from validation points were taken when accessibility allowed as additional validation 

points. Field work was done from October to November 2014. The distribution of ground 

truthing data are shown in Figure 3.4. Validation points for water bodies were not taken, as 

water bodies can be clearly differentiated with high spatial resolution RapidEye images. 

A confusion matrix was then produced, and the computation of Overall Accuracy (OA), 

User’s Accuracy (UA), Producer’s Accuracy (PA) were conducted  to assess accuracy 

(Foody, 2002). The confusion matrix depicts the confusion between classes of each 

classified land use system relative to the reference data. OA accuracy shows the overall 

percentage of correctly-classified objects. Accuracy can also be assessed for each class, as 

UA and PA. UA quantifies the quality of the map by quantifying the correct classification 

for each class (e.g. fifty objects of settlements are correctly classified among sixty objects 

in the map), while PA depicts the quality of classification process by quantifying how many 

objects for each class in the ground are correctly classified (e.g. forty objects of oil palm 

plantations in the ground are correctly classified among a total of sixty objects).  
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3.3. Assessment of key variables of secondary rainforest  

3.3.1. Image pre-processing 

For quantitative analyses combining field inventory and remote sensing data, such as 

biomass estimations, an atmospheric correction is necessary (Lu et al., 2002). In this study, 

atmospheric correction was done for the RapidEye images which were used to assess the 

key variables of the secondary rainforest by combining field inventory and remote sensing 

data. Atmospheric correction was carried out using the Second Simulation of the Sensor 

Signal in the Solar Spectrum (6S) model (Vermote et al., 2006). This 6S model was applied 

in the ForestEye Processor, and the parameter settings to use for correction are either 

provided by standard method or derived from MODIS (Magdon et al., 2011). In this study, 

standard method was used. To implement the 6S model, the aerosol’s model and the 

atmospheric profile must be determined. The aerosol’s model of maritime among other 

aerosol’s models such as continental, urban, background deserts, biomass burning, and 

stratospheric was used since the study area is located between Indian Ocean and South 

China Sea. An atmospheric profile of the tropics was used as the study area is located in 

the tropical area. For this model, the visibility value was required. According to Bojanowski 

(2007), it was computed using equation (3).  

v = exp (- log (AOT /2.7628) / 0.79902)      (3) 

where: 

v = visibility 

AOT = aerosol optical thickness  

For this calculation, the AOT value is available at NASA’s Aerosol Robotic Network 

(AERONET) and determined for the acquisition time of the images. For the images used 

in this study AOT = 0.199147 and, thus, v = 26.88 km. 

3.3.2. Field inventory 

Field data collection was implemented with stratified sampling. NDVI strata generated 

from a TOA-preprocessed Landsat 8 OLI were used as a proxy for forest variables. This is 

because of the lack of information about forest variables prior to field inventory. Landsat 

images needed to be used because RapidEye images became available only after the field 

surveys. RapidEye images were then used for further analyses on the prediction and 

regionalization of forest variables. The NDVI values of Landsat OLI were classified into 

six classes. Such unsupervised classification was implemented in ArcMap 10.3 by using 
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Jenks natural breaks clustering, which minimizes the differences within classes but 

maximizes it between classes (ESRI, 2011).  

 

Figure 3.6. The distribution of sample plots within Harapan rainforest. 

To locate the sample plots, only the NDVI classes for forest area were used. To distinguish 

forest and non-forest areas among NDVI classes, a comparison between NDVI classes and 

RapidEye image by visual interpretation was done. The classification results from the 

RapidEye images conducted in this study were basically used to guide during interpretation. 

Each class of NDVI was visually observed through the RapidEye images, and then defined 

it whether this class represent forest cover. As the result, NDVI classes 3 (NDVI: 0.534-

0.576), 4 (NDVI: 0.576-0.612), and 5 (0.612-0.654) were defined as representatives of the 

forest area.  

Due to the challenges of accessibility, the sample plots were restricted to no more than one 

km distance from the road and located within the transect of a rectangular plot from the 

previous systematic inventory conducted by PT REKI. Each transect of this rectangular 

plot was a 3 km-long survey strip with a 20 m width as depicted in Figure 3.6. The 
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implementation of the plot design was modified from the MoF Decree 33 of 2009 on the 

guideline of periodical forest inventory in production forests and has a plot design of 20 x 

125 m. By locating the sample plots within this transect, it was expected to be more 

accessible and save walking time. Moreover, the areas where illegal encroachment 

activities occurred were avoided in locating sample plots for the sake of security during 

field work. Altogether, thirty sample plots were proportionally located in regard to the 

percentage area of each NDVI class that represents the three forest classes as mentioned 

above. Based on the NDVI values generated from selected sample plots, it can be seen in 

Figure 3.7 that the NDVI ranges of the entire forest were covered by the NDVI ranges of 

the sample plots. In this way, the sample plots represent the population of forest area.  

 

Figure 3.7. Relative frequency of NDVI for all forest areas and sample plots in forest areas. 

In this study, a cluster of two nested rectangular subplots was established where a single 

nested subplot is 20 x 50 m. This plot design was made in order to reduce time. With this 

plot design, two sample plots were able to be tallied in one day. The size of the nested 

subplots is depicted in Figure 3.8, including the threshold of the selected trees. A Global 

Positioning System (GPS) of eTrex 30 by GARMIN was used to store the geographical 

coordinates of the sample plots and to find the locations in the field. These recorded 

coordinates were the bottom center of the first subplot which is located in the south. Once 

the location of a plot was identified, the subplots of 5 x 5 m and 10 x 10 m were established. 

For all nested subplots, the diameter at breast height (dbh) was measured for trees of defined 

diameter classes (Figure 3.8).  

NDVI values for all forest areas

NDVI values for sample plots in 

forest areas

R
e

la
ti

v
e

 f
re

q
u

e
n

c
y

NDVI



Chapter 3 Methodologies - Assessment of key variables of secondary rainforest 

 

 

 42 

 

 
Figure 3.8. A cluster of two nested subplots each with three different sizes of rectangular 
and square sub-plots.  

3.3.3. Dependent variables 

Target variables were above-ground biomass (AGB, ton/ha), basal area (BA, m2/ha), stand 

density (N, trees/ha), and quadratic mean diameter (dq, cm). The generic model provided 

by Brown (1997) and updated by Pearson et al. (2005) and Chave et al. (2005) has 

frequently been used to quantify the AGB in tropical forests (Rutishauser et al., 2013). A 

recent study on the quantification of the AGB around the study area by Kotowska et al. 

(2015), which had a different sampling design, used allometric equation developed by 

Chave et al. (2005). In the present study, the AGB was quantified using the allometric 

equation for moist tropical forests developed by Brown (1997) and updated by Pearson et 

al. (2005) (equation (4)) because of the absence of wood density information. This 

allometric equation was also used by Laumonier et al. (2010) in a study that included Jambi 

province as part of their study area. For their study, the average of AGB was 361±7 Mgha-

1. 

AGB = exp{-2.289 + 2.649 x ln dbh – 0.021 x ln dbh2}                         (4) 

where: AGB is in kg per tree and dbh is in cm. 

The quadratic mean diameter provides larger weight to larger trees. In forest areas where 

the tree diameters are small and the ranges are narrow, the difference between arithmetic 

mean diameter and quadratic mean diameter is small. However, if the tree diameters are 
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large and the ranges are wide, the difference is considerable. dq represents the average 

diameter with the mean basal area, and, thus, has strong relationship with basal area. The 

calculation of dq can be advantageously used to measure the stand volume (Curtis & 

Marshall, 2000).  

An example of the calculations for all target variables from the field measurement is 

described in Appendix A.3. The value of each target variable which is the value per ha of 

AGB, BA, N, and dq for each plot is calculated from the mean of two subplots. After having 

all the values for each plot, the population mean of each target variable was estimated. Even 

though the selection of sample plots in this study did not follow the probability sampling 

design, the estimators of probability sampling design for stratified random sampling were 

implemented. This was done to compromise the statistical sampling design implemented 

in a challenged area. In this study, the sample design followed a stratified sampling but the 

sample plots were not located randomly due to accessibility challenges, as mentioned in 

the previous section. Equation (5) was used to estimate the population mean and, 

accordingly, the standard error of the estimated population mean (SE) was also estimated 

using equation (7) following Van Laar & Akça (2007).  

The estimated population mean is calculated as follows: 

ȳ = ∑
𝑁ℎ

𝑁

𝐿
ℎ=1 ȳℎ                    (5) 

where: 

ȳℎ =
∑ 𝑦𝑖ℎ

𝑛
𝑖=1

𝑛ℎ
                     (6) 

The estimated standard error of the estimated population mean is calculated as follows: 

SE = √vâr(ȳ)                    (7) 

where: 

vâr(ȳ) = ∑ (
𝑁ℎ

𝑁
)2𝐿

ℎ=1
𝑠ℎ

2

𝑛ℎ
                           (8) 

𝑠ℎ
2 =

∑ (𝑦𝑖−ȳℎ)2𝑛
𝑖=1

𝑛ℎ−1
                    (9) 

For the above equations, each of the notations is described as follows: 
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𝐿 : number of strata, ℎ = 1,…, 𝐿, 

𝑁 : population size, 

𝑁ℎ : stratum size, where 𝑁 = ∑ 𝑁ℎ
𝐿
ℎ=1 ,  

𝑦𝑖ℎ : measured value of the i-th sampling unit in the h-th stratum, 

ȳ : estimated population mean 

ȳℎ : estimated mean of the h-th stratum 

𝑛 : total sample size 

𝑛ℎ : sample size in stratum h 

𝑠ℎ
2 : estimated variance in stratum h 

vâr(ȳ) : estimated error variance of the estimated population mean 

SE : estimated standard error of the estimated population mean 

For the 95 % confidence interval (CI), it is calculated as follows: 

CI = ȳ ± tα, (n-1) * SE          (10) 

3.3.4. Predictor variables 

RapidEye images served to provide area-wide predictor variables, where surface 

reflectance of the five bands was used and, vegetation and texture indices were computed 

by the ForestEye Processor (Magdon et al., 2011).  

Vegetation indices can be derived by rationing the pixel values from one spectral band to 

the pixel values from a second spectral band for the same area, where the selection of the 

bands takes into account the purpose of study. This has an impact on minimizing the 

illumination variation due to the topographic effect (Mather & Koch, 2011). For example, 

similar objects with different illumination have different spectral reflectance due to the 

shadowing effect as an impact of topographic variation. The rationing between one spectral 

band and another spectral band (e.g. near-infrared and red band) results in similar values, 

which then allows for easier classification of similar objects.  

 

Table 3.4 Vegetation indices used as remote sensing based predictor variables in this study. 
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Vegetation indices Equation Reference 

 
Normalized Difference 
Vegetation Index 
(NDVI) 
 

 

NDVI =
NIR − Red

NIR + Red
 

 
Gamon et al. (1995) 

NDVI Red-edge 
(NDVI_RE) 
 
 

NDVI_RE =
NIR − RE

NIR + RE
 

Gitelson & Merzlyak, 
(1997) 

Green NDVI 
(NDVI_Green) 
 
 

NDVI_Green =
NIR − Green

NIR + Green
 

Buschmann & Nagel 
(1993) 

Ratio  
 
 
Chlorophyll Green 
Model (CGM) 
 
 

Ratio =
NDVI_RE

NDVI_Green
 

 

CGM =
NIR

Green
− 1 

 
Marx (2010) 
 
Gitelson et al. (2005) 

Chlorophyll Red-edge 
Model (CRM) CRM =

NIR

RE
− 1 

Gitelson et al. (2005) 

 

There are more vegetation indices that incorporate subtraction and summation of different 

spectral bands, as listed in Table 3.4. For instance, the subtraction values of the red band 

from near-infrared band. In the case of healthy vegetation, a maximum reflectance is found 

at the near-infrared wavelength due to high reflectance, while a low reflectance is found at 

the red wavelength due to high absorption. However, unhealthy vegetation will result in an 

increase of red reflectance (Lillesand et al., 2008). The subtraction between near-infrared 

and red band will result higher difference for healthy vegetation than the unhealthy 

vegetation with lesser chlorophyll (Richardson & Everitt, 1992). Therefore, healthy 

vegetation will be easily identified. 

NDVI measures the greenness of the canopy, while the chlorophyll index measures the 

vegetation stresses (Gitelson & Merzlyak, 1997). Other vegetation indices that incorporate 

the Red-edge wavelength, such as CRM and Red-edge NDVI, are also an advantage. This 

is a unique wavelength that differentiates RapidEye images from most of other satellite 

images allowing for the detection of green vegetation health (Jung-Rothenhäusler et al., 

2007). 

Texture is defined as the tonal variations or a structural arrangement of pixel values in 

relation to neighboring pixels (Haralick et al., 1973; Mather & Koch, 2011). In order to 
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measure texture indices, first- and second-order statistics were used in this study as listed 

in Table 3.5. 

In the first-order texture index, the respective index is counted from all the neighboring 

pixel values. The difference between first- and second-order statistics is that the first-order 

statistics do not consider the relationship between two neighboring pixel values in 

calculating the texture indices as the second-order statistics do (Hall-Beyer, 2007). The 

second-order texture index represents the co-occurrence of two neighboring pixel values 

(i,j), one pixel value i and another pixel value j, separated at a certain distance (d) and 

direction (θ) (Haralick et al., 1973). It is known as Grey Level Co-Occurrence Matrix 

(GLCM). There are four directions that define the spatial relation of direct pixel neighbors: 

0°, 45°, 90°, and 135°. For both approaches, a moving window for defining the neighboring 

pixels to be evaluated was determined as the first step by defining the number of columns 

and rows of the window. The corresponding texture index is calculated from the windows 

pixel values and the result is assigned as a new value at the center pixel. Subsequently, the 

window is shifted by one pixel and the corresponding texture index is continuously 

calculated for all the pixels in the image. 

In this study, texture indices were generated from RapidEye’s near-infrared band. This 

wavelength has high reflectance of vegetation (Basuki et al., 2013) which is expected to be 

more sensitive to identify vegetation characteristics. As the target variables are forest 

variables, the use of NIR is beneficial for calculating the texture index aimed at 

characterizing the target variables. Three different sizes of moving windows were used (i.e., 

3 x 3, 9 x 9, and 15 x 15). 

 

 

 

 

 

Table 3.5 Texture indices used as predictor variables (𝑘 = number of spectral values, 𝑥𝑖  = 
spectral value in pixel i, i = the pixel within the defined window, 𝜇 = mean of spectral 
values, 𝑁 = number of gray levels, 𝑝(𝑖, 𝑗) = probability occurrence of two neighboring 
pixels, i.e. pixel 𝑖 and pixel  (𝑖, 𝑗), 𝜎 = standard deviation). 
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Texture Indices Equation Reference 

First-order texture 
indices (TXO) 

  

Mean (ME) TXO_ME =
1

𝑘
∑ 𝑥𝑖

𝑘

𝑖=1

 
Castillo-Santiago, et 
al. (2010) 

Standard Deviation 
(SD) TXO_SD = 𝑠𝑞𝑟𝑡 (

1

𝑘
∑(𝑥𝑖 − 𝜇)2)

𝑘

𝑖=1

 
Castillo-Santiago, et 
al. (2010) 

Second-order texture 

indices (TX) 

  

Angular Second 

Moment 

 

TX_ASM = ∑ 𝑝(𝑖, 𝑗)2

𝑁−1

𝑖,𝑗=0

 
Haralick et al. (1973) 

 

 

Contrast 

 

TX_CON = ∑ 𝑝(𝑖, 𝑗)(𝑖 − 𝑗)2

𝑁−1

𝑖,𝑗=0

 
Haralick et al. (1973) 

 

 

Entropy 

 

TX_ENT = − ∑ 𝑝(𝑖, 𝑗)

𝑁−1

𝑖,𝑗=0

log (𝑝(𝑖, 𝑗)) 
Haralick et al. (1973) 

 

 
Inverse Difference 

Moment 

 

TX_IDM = ∑
1

1 + (𝑖 − 𝑗)2
𝑝(𝑖, 𝑗)

𝑁−1

𝑖,𝑗=0

 

Haralick et al. (1973) 

 

 

Correlation 

 
TX_CORR =

∑ p(i, j)
𝑁−1

𝑖,𝑗=0
−𝜇𝑖𝜇𝑗

𝜎𝑖𝜎𝑗

 
Haralick et al. (1973) 

 

 

Dissimilarity 

 

TX_DISS = ∑ 𝑝(𝑖, 𝑗)ǀ𝑖 − 𝑗ǀ

𝑁−1

𝑖,𝑗=0

 
Haralick et al. (1973) 

 

 

Mean 

 

TX_ME = ∑ 𝑝(𝑖, 𝑗)(𝑖)

𝑁−1

𝑖,𝑗=0

 
Haralick et al. (1973) 

 

 

Variance TX_VAR = ∑ 𝑝(𝑖, 𝑗)(𝑖 − 𝜇)2

𝑁−1

𝑖,𝑗=0

 
Haralick et al. (1973) 
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For the model prediction, 29 of 30 plots were used, as one plot was only covered by 

shrub/bush and dead trees. Another subplot, containing a tree with a dbh > 2m, was also 

excluded since the allometric equation used in this study for biomass modelling (Brown, 
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1997) does not cover a dbh range greater than 2 m. Prior to the implementation of statistical 

modeling, the mean values of the dependent variables and the predictor variables were 

generated for the 29 plots. For the dependent variables, these values characterize the 

average value of forest variables from two subplots at each plot. For the predictor variables, 

the mean values characterize the average value of all pixel values for corresponding image 

features from two subplots at each plot. By extracting the mean pixel value, it minimizes 

the mismatching of geolocations between the image and the sample plots (Beckschäfer et 

al., 2014; Fuchs et al., 2009).  

The calculated mean values of 41 independent variables (i.e. the surface reflectance of five 

bands, six vegetation indices, and ten texture indices with three different moving windows) 

were transformed using the Box-Cox transformation (Box & Cox, 1964) for normality and 

linearity of the variables. The Box-Cox transformation was applied using the ‘MASS’ 

library of the R package (R Core Team, 2015). Among these predictor variables, a subset 

of variables was selected through a stepwise exhaustive search approach that takes into 

account all possible combinations of predictor variables. This approach was applied using 

the ‘leaps’ library of the R package (Lumley & Miller, 2009; R Core Team, 2015). Through 

different subsets of predictor variables, a multiple linear regression that relates each 

dependent variable with each subset of predictor variables by using equation (11) was then 

implemented to find the best model.   

𝑦𝑖 =  𝑏0 + 𝑏1. 𝑥1 + ⋯ + 𝑏𝑖 . 𝑥𝑖 + 𝜀𝑖        (11) 

where: 

yi are the dependent variables (i.e. AGB, BA, dq, N) of the i-th observation where i = 1, 

2,…, n; x1-xi are the predictor variables including spectral reflectance of five bands, 

vegetation, and texture indices; b0-bi are the model coefficients, and εi is the random error 

term.  

The best model was selected by evaluating the adjusted R2 and p-values for the estimated 

coefficients, where a p-value of < 0.1 was used as threshold. The variance inflation factor 

(𝑉𝐼𝐹) was also taken into account to identify multicollinearity among the independent 

variables. VIF was calculated using the ‘car’ library of the R package following the 

equation (12) (R Core Team, 2015). The 𝑉𝐼𝐹 identifies the degree of multicollinearity. 𝑉𝐼𝐹 

measures the coefficient of determination 𝑅2 within the predictor variables (Fahrmeir et al., 

2013) where each predictor variable acts as a dependent variable. The larger the correlation 
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within predictor variables, the larger the 𝑅2  is, and therefore the VIF will be larger 

(Fahrmeir et al., 2013). If the 𝑅2  = 0, the VIF will be one, which means there is no 

multicollinearity. In this study, a common threshold of VIF > 10 was used to define 

multicollinearity (Eckert, 2012; Fahrmeir et al., 2013; Hair et al., 2010; Sarker & Nichol, 

2011). With the chosen models, forest variables were then predicted. 

𝑉𝐼𝐹 =
1

1−𝑅2
                                                                   (12) 

In order to validate the model, a Leave-One-Out Cross Validation (LOOCV) was done 

because of the low sample size of the plots (n = 29). The ‘boot’ library of the R package (R 

Core Team, 2015) was used, estimating the Root Mean Square Error (𝑅𝑀𝑆𝐸) and the 

relative RMSE (𝑅𝑀𝑆𝐸𝑟). For all observations, this method leaves out one observation and 

fits the model to the rest of the observations. The generated model is then used to estimate 

the value of one observation left out 𝑦𝑖 resulting ŷ𝑖. 𝑅𝑀𝑆𝐸 and 𝑅𝑀𝑆𝐸𝑟 are then calculated 

using equation (13) and (14) (James et al., 2013). 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−ŷ𝑖)2𝑛

𝑖=1

𝑛
 = √𝑀𝑆𝐸                  (13) 

𝑅𝑀𝑆𝐸𝑟 =
𝑅𝑀𝑆𝐸

ȳ
 𝑥 100%                               (14) 

where: 
n = observation number 

𝑦𝑖 = observed value of i 

ŷ𝑖 = estimated value of i 

ȳ = estimated population mean  

With the identified models, maps of the target variables were then produced for the area 

classified as forest which was masked out following the approaches described in subsection 

3.2. A value of zero was set for each negative value within the modeled maps (Fuchs et al., 

2009).  
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Results 

 

 

4.1. Monitoring land use systems  

4.1.1. Analyses of land use change  

The quantification of land use change produced information to analyze the transition 

between classes and, thus, temporal dynamics among the classes are able to be evaluated. 

As depicted in Table 4.1, the decrease of primary forests and secondary forests between 

1990 and 2013 took place at a considerable rate in Jambi province. The area of primary 

forest decreased from 1.34 Mha in 1990 to 0.83 Mha in 2013, which corresponds to a loss 

of 38.2 % with annual forest loss of about 1.7 %. Secondary forest area decreased from 

0.92 Mha in 1990 to 0.64 Mha in 2013, corresponding to a loss of 30.9 % with annual loss 

of 1.3 %. Comparing the 2000 land use maps produced by Hansen et al. (2013) and the one 

produced in present study demonstrates that the forest areas (i.e. tree cover ≥ 30 %) by 

Hansen et al. (2013) covered 91.7 % of the Jambi province, while forest areas (i.e. primary, 

secondary, and plantation forests) in this study covered 39.8 %. Overall, around 42.5 % of 

the forest areas produced by Hansen et al. (2013) overlapped with those in this study. The 

remaining forest areas were mismatched with other land use systems, as can be seen in 

Appendix A.4. This mismatching can be interpreted due to their definition of forests as “all 

vegetation taller than 5 m in height”, which might overestimate the forest cover areas. 

The area of rubber and oil palm plantations, however, has increased between 1990 and 

2013. The net increase of oil palm plantations was around 77.2 %, from 0.34 Mha in 1990 

to 0.60 Mha in 2013 which corresponds to an annual net increase of 3.4 %. The net increase 

of rubber plantations was relatively small, at around 6.8 %, from 0.86 Mha in 1990 to 0.92 

Mha in 2013 with an annual net increase of 0.3 %. Among the agricultural systems, the 

annual net increase of oil palm plantations was highest in the period of 1990-2000, at 

around 6.4 %. However, the area of jungle rubber had declined with an annual net decrease 

of around 0.8 %, from a total area of 0.1 Mha in 1990 to 0.08 Mha in 2013. This figure is, 

however, less certain due to the confusion of land use classification between jungle rubber 

and rubber plantation with a low producer’s accuracy of 48.1% (Appendix A.2.). Compared 
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to oil palm plantations and jungle rubber, the areas of rubber plantation were the largest 

during the period of 1990-2013. 

Table 4.1. Land use in Jambi province between 1990 and 2013. 

Land use 
systems 

1990 2000 2011 2013 

Area (Ha) % Area (Ha) % Area (Ha) % Area (Ha) % 

Primary forest 1,335,299.7 27.1 887,494.2 18.0 826,531.4 16.8 825,460.6 16.8 

Secondary 
forest 

919,817.5 18.7 882,625.0 17.9 657,911.8 13.4 635,449.6 12.9 

Agriculture 717,745.2 14.6 868,130.6 17.7 926,888.9 18.8 926,238.5 18.8 

Jungle rubber 97,185.0 2.0 26,070.1 0.5 79,068.2 1.6 79,068.2 1.6 

Rubber 
plantation 

856,667.2 17.4 890,389.9 18.1 966,039.9 19.6 915,033.1 18.6 

Oil palm 
plantation 

338,266.4 6.9 555,507.3 11.3 602,594.8 12.3 599,391.3 12.2 

Plantation 
forest 

182,819.1 3.7 189,026.8 3.8 207,857.8 4.2 232,593.6 4.7 

Shrub/bush 360,082.7 7.3 493,557.5 10.0 519,920.4 10.6 519,239.4 10.6 

Others 110,432.6 2.2 125,514.1 2.6 131,502.2 2.7 185,841.1 3.8 

 

Table 4.2. Transformation of land use systems (%*) in Jambi province. The status in 1990 
is compared here with the status in 2013. 

  Land use 
systems in 

1990 

Land use systems in 2013 Total 
1990 

Loss 
  1 2 3 4 5 6 7 8 9 

1 
Primary 
forest 

16.8 5.6 1.6 0.3 1.2 0.3 0.0 1.1 0.2 27.1 10.4 

2 
Secondary 
forest 

0.0 6.8 1.4 0.7 3.4 2.9 1.0 2.1 0.5 18.7 11.9 

3 Agriculture 0.0 0.0 12.4 0.0 0.3 1.1 0.0 0.4 0.2 14.6 2.2 

4 
Jungle 
rubber 

0.0 0.0 0.1 0.4 0.0 0.0 1.2 0.2 0.0 2.0 1.6 

5 
Rubber 
plantation 

0.0 0.0 1.5 0.1 13.1 1.5 0.4 0.4 0.5 17.4 4.3 

6 
Oil palm 
plantation 

0.0 0.0 0.5 0.0 0.2 5.6 0.2 0.2 0.2 6.9 1.3 

7 
Plantation 
forest 

0.0 0.3 0.3 0.0 0.2 0.4 2.0 0.4 0.2 3.7 1.7 

8 Shrub/bush 0.0 0.1 0.9 0.0 0.1 0.2 0.0 5.8 0.1 7.3 1.5 
9 Others 0.0 0.0 0.1 0.0 0.1 0.2 0.0 0.0 1.8 2.2 0.4 

Total 2013 16.8 12.9 18.8 1.6 18.6 12.2 4.7 10.6 3.8 100.0   
Gain 0.0 6.1 6.4 1.2 5.5 6.6 2.7 4.8 1.9    

*Percentages depict the proportion of each land use transformation of the total study area. 
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The transformation matrix showing the changes of land use systems during the 1990-2013 

period can be seen in more detail in Table 4.2. This table compares the status of 1990 with 

the status of 2013. All other intermediate dynamics and transitions within this period are 

not visible here. Primary forests in 1990 were largely converted to secondary forests in 

2013, while secondary forests in 1990 were largely converted into oil palm and rubber 

plantations in 2013, as well as shrub/bush. The conversion into these tree crop plantations 

means that economic tree crops were the main cause of secondary forest losses. The land 

conversion also took place from rubber plantation into oil palm plantations. 

 

 

Figure 4.1. The annual gain and loss (ha/year) of a) primary forests and b) secondary forests 
in different periods.  
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Among the three periods from 1990-2013, as seen in Figure 4.1, the highest annual loss of 

primary and secondary forests took place in the period of 1990-2000. The primary forest 

loss was mainly due to the high transformation into secondary forest from 1990 to 2000 

(Table 4.3), an indication of high forest degradation in this period. This had created a high 

increase of secondary forest area as seen in Figure 4.1. This transformation of primary 

forest into secondary forest also took place from 2000 to 2011 to a smaller extent (Table 

4.4). A low gain value of primary forest area from 1990-2000 was due to the conversion of 

secondary forest into primary forest (Table 4.3). In this case, a misinterpretation between 

both classes may occur where the old growth secondary forest might be interpreted as 

primary forest.  

Table 4.3. Transformation of land use systems (%*) in Jambi province. The status in 1990 
is compared here with the status in 2000. 

  Land use 
systems in 

1990 

Land use systems in 2000 
Total 
1990 

Loss 
  1 2 3 4 5 6 7 8 9 

1 
Primary 
forest 

17.9 5.9 1.0 0.0 0.8 0.3 0.0 1.1 0.1 27.1 9.2 

2 
Secondary 
forest 

0.1 10.9 0.9 0.0 3.0 2.0 0.2 1.5 0.2 18.7 7.8 

3 Agriculture 0.0 0.2 12.3 0.0 0.3 1.1 0.0 0.4 0.2 14.6 2.3 

4 
Jungle 
rubber 

0.0 0.0 0.1 0.4 0.0 0.0 1.2 0.2 0.0 2.0 1.6 

5 
Rubber 
plantation 

0.0 0.3 1.5 0.0 13.4 1.5 0.3 0.4 0.1 17.4 4.0 

6 
Oil palm 
plantation 

0.0 0.1 0.5 0.0 0.2 5.6 0.2 0.2 0.1 6.9 1.3 

7 
Plantation 
forest 

0.0 0.3 0.3 0.0 0.4 0.4 2.0 0.4 0.0 3.7 1.7 

8 Shrub/bush 0.0 0.2 0.9 0.0 0.1 0.2 0.0 5.8 0.0 7.3 1.5 
9 Others 0.0 0.0 0.1 0.0 0.1 0.2 0.0 0.0 1.9 2.2 0.4 

Total 2000 18.0 17.9 17.7 0.5 18.1 11.3 3.8 10.0 2.6 100.0   
Gain 0.1 7.0 5.4 0.1 4.7 5.7 1.8 4.2 0.7    

*Percentages depict the proportion of each land use transformation of the total study area. 

From the Figure 4.1, a high annual loss of secondary forest in the period of 1990-2000 

indicated high expansion of tree crop plantations (i.e. oil palm and rubber plantations) as 

also seen in Table 4.3. Nonetheless, the area of secondary forest in 2000 was similar to the 

area in 1990 (Table 4.3) due to the aforementioned high degradation from primary forest 

into secondary forest.   
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Table 4.4. Transformation of land use systems (%*) in Jambi province. The status in 2000 
is compared here with the status in 2011. 

  Land use 
systems in 

2000 

Land use systems in 2011 
Total 
2000 

Loss 
  1 2 3 4 5 6 7 8 9 

1 
Primary 
forest 

16.8 1.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 18.0 1.2 

2 
Secondary 
forest 

0.0 12.3 1.0 1.1 1.4 0.8 0.4 0.8 0.2 17.9 5.6 

3 Agriculture 0.0 0.0 17.7 0.0 0.0 0.0 0.0 0.0 0.0 17.7 0.0 

4 
Jungle 
rubber 

0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.5 0.0 

5 
Rubber 
plantation 

0.0 0.0 0.0 0.0 18.1 0.0 0.0 0.0 0.0 18.1 0.0 

6 
Oil palm 
plantation 

0.0 0.0 0.0 0.0 0.0 11.3 0.0 0.0 0.0 11.3 0.0 

7 
Plantation 
forest 

0.0 0.0 0.0 0.0 0.0 0.0 3.8 0.0 0.0 3.8 0.0 

8 Shrub/bush 0.0 0.1 0.1 0.0 0.0 0.1 0.0 9.7 0.0 10.0 0.3 
9 Others 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.5 2.6 0.1 
Total 2011 16.8 13.4 18.8 1.6 19.6 12.3 4.2 10.6 2.7 100.0   
Gain 0.0 1.1 1.2 1.1 1.5 1.0 0.4 0.8 0.2    

*Percentages depict the proportion of each land use transformation of the total study area. 

Table 4.5. Transformation of land use systems (%*) in Jambi province. The status in 2011 
is compared here with the status in 2013. 

  Land use 
systems in 

2011 

Land use systems in 2013 
Total 
2011 

Loss 
  1 2 3 4 5 6 7 8 9 

1 
Primary 
forest 

16.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16.8 0.0 

2 
Secondary 
forest 

0.0 12.9 0.0 0.0 0.0 0.0 0.2 0.1 0.1 13.4 0.5 

3 Agriculture 0.0 0.0 18.8 0.0 0.0 0.0 0.0 0.0 0.0 18.8 0.0 

4 
Jungle 
rubber 

0.0 0.0 0.0 1.6 0.0 0.0 0.0 0.0 0.0 1.6 0.0 

5 
Rubber 
plantation 

0.0 0.0 0.0 0.0 18.6 0.0 0.1 0.0 1.0 19.6 1.0 

6 
Oil palm 
plantation 

0.0 0.0 0.0 0.0 0.0 12.2 0.0 0.0 0.1 12.3 0.1 

7 
Plantation 
forest 

0.0 0.0 0.0 0.0 0.0 0.0 4.2 0.0 0.1 4.2 0.1 

8 Shrub/bush 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.4 0.1 10.6 0.2 
9 Others 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 2.4 2.7 0.2 

Total 2013 16.8 12.9 18.8 1.6 18.6 12.2 4.7 10.6 3.8 100.0   
Gain 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.2 1.3    

*Percentages depict the proportion of each land use transformation of the total study area. 
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The annual loss in secondary forests was consistently larger than in primary forests for the 

later periods where the transformation into tree crop plantations continuously took place 

during the 2000-2011 period (Table 4.4). However, the transformation of secondary forest 

into tree crop plantations was not found in the last period of 2011-2013 (Table 4.5). Among 

the three periods of land use transformation as seen in Table 4.3, Table 4.4, and Table 4.5, 

transformation dynamics was mostly found between 1990 and 2000 indicating a 

remarkable land use change in this period. 

4.1.2. Spatial pattern analysis 

In order to identify alterations of landscape patterns due to land use transformation, a spatial 

pattern analysis was conducted by landscape metrics. Two landscape metrics, mean patch 

size and aggregation index, were computed from the land use maps for the major land use 

classes. Figure 4.2 depicts the results of this analysis.  

 

 

Figure 4.2. a) Mean patch size and b) Aggregation index in the period of 1990-2013. 

a) 

b) 
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Secondary forests and oil palm plantations show the most dynamic transformation 

processes: mean patch size continually decreased for secondary forests and increased for 

oil palm plantations. For the aggregation index, a similar trend can be observed: while 

secondary forests became more and more disaggregated with a decreasing aggregation 

index over the period 1990-2013, the opposite can be seen for oil palm plantations. In this 

case, the decrease of secondary forest area over the period studied had an impact of 

decreasing both the MPS and the AI. This can also be seen for oil palm plantations where 

the increase of its area was followed by the increase of its MPS and AI. 

For the MPS and AI of rubber plantations, there was no trend within the observed time 

frame. A similar trend was seen in the area extent of rubber plantations as there was no 

considerable change in the total area for rubber plantation (Table 4.1). For jungle rubber 

that has an overall very small area extent only and is difficult to distinguish from rubber 

plantations, an uneven trend was observed. The decline of both metrics in 2000 can be 

interpreted due to high loss of jungle rubber area (Table 4.1). However, the fragmentation 

had about the same value in 1990 and 2013. 

4.1.3. Factors related to deforestation 

The relation of socio-economic and topographic factors to deforestation was analyzed. 

These factors were then used to interpret the potential drivers of deforestation. Figure 4.3 

shows the area of deforestation depicted as a function of elevation and slope. In 1990, 

forests were mostly located in an elevation of around 0 to 200 m.a.s.l and at a slope gradient 

from 0 to 20 %. In the analyses of three different study periods, deforestation mostly took 

place in low elevations, around < 100 m.a.s.l., as well as at low slope gradients, around < 

10%. This demonstrates that lowland areas were mostly deforested, as they are less 

challenging to access and to establish agriculture in.  

The relationships between the annual change of socio-economic variables and the annual 

deforestation at the district level have also been analyzed. Jambi city has no forests and the 

forests in Sungai Penuh city remained stable within the study period. Socio-economic 

variables were available for the periods of 2000-2011 and 2011-2013. As forest cover was 

found to be close to stable in the period of 2011-2013 for the nine districts in Jambi 

province, analyses were only performed for the period of 2000-2011. 



Chapter 4 Results - Monitoring land use systems 

 

 

 57 

 

 

Figure 4.3. Distribution of forest areas in 1990 and deforestation in the Jambi province at 
different periods (1990-2000, 2000-2011, and 2011-2013) according to different a) 
elevation and b) slope. These figures show the total area. 

 Table 4.6 shows the relationships between deforestation and some socio-economic 

variables, of which district data were available. In this study, the 9 districts were considered 

as the population of interest so that statements about statistical significance are not made 

here, but interpretation is restricted to the value of the calculated coefficient. Therefore, our 

interpretation focuses on the relevance of the subject-matter and not on statistical 

significance. The value of the calculated coefficient is taken as a measure of relevance. 

Following this interpretation, the GRDP per capita and the number of oil palm farmers were 

not found to be relevant in relation to deforestation because the coefficients have low 

a) 

b) 
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values. Equally, the number of rubber farmers and the population density have coefficients 

that are relatively small. These were indications of lesser relevance. However, rubber and 

oil palm productivity were the two factors that are highly and relevantly related to 

deforestation with high coefficients. This result, of course, was to be expected, and 

underlines the identification of tree crops as major drivers of forest conversions. 

Table 4.6. Results of a simple linear regression between the annual change of socio-
economic variables and annual deforestation for the period of 2000-2011. Statistics of 
significance are not given here, because these calculations refer to the population of all 9 
districts. 

 

 

4.2. Evaluation of the tree crops mapping using high spatial resolution images 

4.2.1. Selection of segmentation parameters 

The different parameter settings of spatial radius, range radius, and minimum region size 

generated thirty-six segmented images. In order to select the best parameter settings, 

comparisons between reference objects and segmented images were made and they 

produced correct detection, over-segmentation, and missed detection scores. Under-

segmentation scores were not found at any segment comparison. The results of the different 

comparisons for each parameter setting were ordered from highest to the lowest scores of 

the correct detection as shown in Table 4.7.  

From Table 4.7, one sees that the higher the correct detection score, the lesser the over-

segmentation score. The lowest over-segmentation score is the result of image 

segmentation with largest hs, hr and Mr (i.e. hs/hr/Mr of 15/0.02/50), while the highest over-

segmentation score is oppositely found for the smallest radius of hs, hr and Mr (i.e. hs/hr/Mr 

of 5/0.005/10). For the missed detection score, one cannot see any distinctive pattern. 

Table 4.7. The scores generated from comparisons between reference objects and 
segmented images with different parameter settings using Hoover metrics (sorted by the 

Variable Regression coefficient 

Population density -2.5 

GRDP per capita 0.0 

Rubber productivity 6.8 

Oil palm productivity 14.6 

Number of rubber farmers 2.3 

Number of oil palm farmers -1.2 
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level of correct detection). The smallest the radius of parameter settings, the highest the 
over-segmentation score. However, the correct detection score is the smallest. There is no 
distinctive pattern for missed detection score. 

ID 
Parameters 

Correct detection  Over-segmentation Missed detection hs hr Mr 

1 15 0.02 50 0.75492 0.23193 0.03412 

2 15 0.02 30 0.75153 0.2404 0.03412 

3 15 0.02 10 0.74047 0.26461 0.03412 

4 5 0.015 50 0.73835 0.27436 0.00867 

5 10 0.015 30 0.72426 0.28769 0.01479 

6 5 0.015 30 0.72211 0.29672 0.0079 

7 10 0.015 50 0.72206 0.27073 0.02615 

8 15 0.01 50 0.71432 0.30313 0.00972 

9 15 0.015 50 0.71382 0.26493 0.04824 

10 10 0.015 10 0.71326 0.3253 0.00561 

11 15 0.015 30 0.71025 0.2882 0.03627 

12 10 0.02 50 0.7058 0.24695 0.05173 

13 10 0.01 50 0.70415 0.3239 0.00352 

14 15 0.01 30 0.70357 0.32499 0.00666 

15 10 0.02 30 0.70196 0.26205 0.05173 

16 5 0.01 50 0.70042 0.31618 0.02139 

17 15 0.015 10 0.69994 0.31402 0.02504 

18 5 0.015 10 0.69966 0.33525 0.0079 

19 5 0.02 50 0.69825 0.26093 0.05291 

20 5 0.02 30 0.69375 0.27681 0.05167 

21 10 0.01 30 0.69112 0.33952 0.00919 

22 5 0.01 30 0.68916 0.34662 0.01104 

23 15 0.01 10 0.68735 0.37315 0.00124 

24 10 0.02 10 0.6866 0.28565 0.04631 

25 5 0.02 10 0.68404 0.30292 0.05167 

26 10 0.01 10 0.6734 0.38641 0.00352 

27 5 0.01 10 0.6708 0.39876 0.00124 

28 15 0.005 50 0.66001 0.37823 0.00666 

29 10 0.005 50 0.65421 0.38211 0.01697 

30 15 0.005 30 0.64625 0.41322 0.00666 

31 10 0.005 30 0.63834 0.42222 0.01332 

32 5 0.005 50 0.62243 0.44329 0.01104 

33 15 0.005 10 0.62114 0.4688 0.00352 

34 10 0.005 10 0.60567 0.49449 0.00376 

35 5 0.005 30 0.59634 0.49818 0.00666 

36 5 0.005 10 0 0.58886 0.00124 
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To observe the effect on the number of polygons and the size of the objects (i.e. the 

maximum and average object sizes), the resulting segmented images with different 

parameter settings (hs and hr) but the same Mr were further evaluated. As can be seen in 

Table 4.8, the use of the same Mr and hs settings yielded a smaller number of polygons with 

a higher hr. Higher mean and maximum object sizes were derived with higher hr. Other 

settings with the same Mr and hr produced smaller numbers of polygons for higher values 

of hs. However, the higher values of hs lead to an increase of mean object size, except for 

the lowest hr (i.e. hr = 0.005), which resulted in similar mean sizes. For the maximum size, 

the higher the hs, the higher the maximum object size was also; however, this trend was not 

found for hs/hr 5/0.015 and 10/0.015 and for 10/0.005 and 15/0.005. As expected, it was 

obvious that the higher of both spatial and range radius produced smaller number of 

polygons, but higher maximum and average object sizes.  

Table 4.8. Number of polygons and object sizes produced by each parameter setting for 
segmentation with different hs and hr but same Mr (= 30). 

Mr hs hr 
Number of  
polygons 

Max. (Ha) Mean (Ha) 

30 5 0.005 543354 1.27 0.18 

30 5 0.01 459219 134.10 0.21 

30 5 0.015 281949 1741.49 0.35 

30 5 0.02 137382 3786.89 0.72 

30 10 0.005 539701 5.78 0.18 

30 10 0.01 415919 187.55 0.24 

30 10 0.015 235553 1444.57 0.42 

30 10 0.02 110358 6387.17 0.89 

30 15 0.005 535681 3.91 0.18 

30 15 0.01 385601 236.63 0.26 

30 15 0.015 198818 2304.18 0.50 

30 15 0.02 87032 6493.71 1.13 

The median of the object sizes was similar for the different parameter settings (see Figure 

4.4). However, the ranges of the polygon sizes varied considerably. Among the parameter 

settings, the highest hs at 15 and hr at 0.02 produced the largest range of object sizes. The 

comparison of object sizes with different parameter settings, including the smallest (hs/hr/Mr 

of 5/0.005/30) and the highest parameter settings (hs/hr/Mr of 15/0.02/30) are depicted in 

Figure 4.5. The figures show that the objects are partitioned into larger pieces with the 
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highest parameter settings of hs = 15 and hr = 0.02 than the smallest parameter settings of 

of hs = 5 and hr = 0.005. 

 

Figure 4.4. Boxplot of object sizes for each parameter setting with different hs and hr but 
constant Mr (=30) for the whole study area (outliers are not depicted). For each parameter 
setting, there were a number of outliers found across the entire objects (i.e. from hs 5, hr 

0.005 to hs 15, hr  0.02: 4 %, 6.1 %, 9.6 %, 10.3 %, 3.9 %, 7.2 %, 10.6 %, 12 %, 4.1 %, 8 %, 
12.2 %, and 13.6 % out of the total objects, respectively). 

 

Figure 4.5. Different results of image segmentation with parameter settings hs/hr/Mr of a) 
5/0.005/30, b) 5/0.015/30, and c) 15/0.02/30 for the same image (RapidEye image with 
false color composite of RGB 543). The number of objects and average size of each 
example is 598 objects and 0.16 Ha, 198 objects and 0.48 Ha, and 37 objects and 2.59 Ha, 
respectively. 

a) b)

c)
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From these outputs of image segmentation, the best parameter settings were selected using 

the Hoover metrics by following these steps: 

1. Compiling each score of the Hoover metrics for each parameter setting, 

2. Sorting the parameter settings according to the score of correct detection (Table 4.7), 

3. Creating scatter plots (Figure 4.6) depicting the scores of correct detection, over-

segmentation, and missed detection that were ordered based on the second step, 

4. Choosing the best parameter settings for the highest score of over-segmentation; 

however, the score of correct detection is not zero which means that overlapped objects 

between reference objects and objects from the segmented image are still present. 

By following the above-mentioned criteria, we see in Figure 4.6, the highest over-

segmentation score was found for ID = 36, however the score of correct detection was zero. 

In this study, the best parameter setting was therefore selected for ID = 35 with the 

combination of hs = 5, hr = 0.005, and Mr = 30, as shown by the red line. 

 

Figure 4.6. The scatterplot of correct detection, over-segmentation, and missed detection 
scores with different parameterized segments (ordered according to the highest correct 
detection score). The best parameter setting is shown by the red line with the high score of 
over-segmentation and correct detection is present. 
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4.2.2. Image classification  

With the best selected parameter setting, further steps in object-based image classification 

were done. By using the Random Forest classifier, the five most important variables among 

the eight predictor variables were selected based on the largest value of mean decrease of 

accuracy produced by RF as explained in subsection 3.2.5. From Figure 4.7, NDVI_RE, 

B5, B4, NDVI, and B1 with the high value of mean decrease of accuracy were selected as 

the predictor variables. 

 

Figure 4.7. The importance of predictor variables based on OOB data. Predictor variables 
consist of spectral reflectance values of RapidEye for Band 1 (B1), Band 2 (B2), Band 3 
(B3), Band 4 (B4), Band 5 (B5), and the values of NDVI Red-edge (NDVI_RE), NDVI, as 
well as the ratio of perimeter and area of each segment (PARA).  

The evaluation of the land use classification was done in two different ways, through the 

accuracy assessment of the classification model using OOB data that were randomly 

generated by RF classifier, and through ground truthing data collected in the field. The 

classification model generated an OA of 81.8 % (Table 4.9). Regarding the tree crops 

mapping, the model performed better for the classification of oil palm plantations than for 

jungle rubber and rubber plantations. The classification of oil palm plantations had a 

PA/UA of 78.2 %/86.5 %. On the other hand, less accuracy was found for jungle rubber, 

with a PA/UA of 50.2 %/52.3 %, and for rubber plantations of just 19.4 %/40.6 %. The 

most successful classification was found for secondary forest, with a PA/UA of 85.4 %/83.7 

%. 

B5

B4

NDVI

B1

B2

B3

PARA

NDVI_RE

Mean Decrease AccuracyMean decrease of accuracy (%) 
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By using an independent data set from ground truthing data, the map validation produced 

an OA of 64.1 % (Table 4.10). The most successful land use classification was found for 

the class of secondary forest with a PA/UA of 89.2 %/76.8 %. The classification of jungle 

rubber and rubber plantation was less successful, with the PA being less than 50 %. In this 

case, jungle rubber was frequently classified as shrub/bush and was also classified as rubber 

plantation and secondary forest, to a lesser extent. Rubber plantations were mostly confused 

with jungle rubber and shrub/bush. The UA of jungle rubber was very low at around 25.5 

%, due to confusion with rubber plantation. The confusion between jungle rubber and 

rubber plantation was found due to mixtures of rubber plantations with other vegetation on 

the ground. The field survey revealed that rubber plantations were not only always grown 

with rubber tress but with other woody vegetation, as well as grasses that depend on their 

management status (examples are in Figure 4.8). As also found in Table 4.9 where OOB 

data were used for accuracy assessment, the confusion also occurred between jungle rubber 

and rubber plantation as well as shrub/bush.  

Table 4.9. Confusion matrix from OOB data. 

 

 

  
Classification 

 
  

Secondary 

forest 

Jungle 

rubber 

Rubber 

plantation 

Oil palm 
plantation  

Shrub/ 
bush 

Bare 
land Settlement 

Water 
body Total 

PA 
(%) 

R
ef

er
en

ce
 

Secondary 
forest 1325 26 2 78 118 1 0 2 1552 85.4 

Jungle 
rubber 27 101 10 2 61 0 0 0 201 50.2 

Rubber 
plantation 3 21 13 0 24 6 0 0 67 19.4 

Oil palm 
plantation 107 4 0 737 85 9 0 0 942 78.2 

Shrub/ 
bush 118 40 6 31 1778 66 0 2 2041 87.1 

Bare land 1 1 1 4 89 462 12 4 574 80.5 

Settlement 0 0 0 0 1 22 13 0 36 36.1 

Water 
body 2 0 0 0 1 3 0 17 23 73.9 

Total 1583 193 32 852 2157 569 25 25 5436 
 

 
UA (%) 83.7 52.3 40.6 86.5 82.4 81.2 52.0 68.0 

  

 
OAA (%) 81.8 
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Table 4.10. Confusion matrix from independent ground truthing data. 

  

  

  

Classification 

Bare 
land 

Jungle 
rubber 

Oil palm 
plantation 

Rubber 
plantation 

Secondary 
forest 

Settlement 
Shrub/ 
bush 

Total 
PA 
(%) 

R
ef

er
en

ce
 

Bare land 54  0 1 1  0 5 5 66 81.8 

Jungle 
rubber 0  12  0 2 1  0 13 28 42.9 

Oil palm 
plantation 6 2 111 0  18  0 61 198 56.1 

Rubber 
plantation 10 28 5 24 10 2 28 107 22.4 

Secondary 
forest 1 2 1  0 116  0 10 130 89.2 

Settlement 17  0  0 3  0 27 3 50 54.0 

Shrub/bush 4 3 3 1 6  0 106 123 86.2 

Total 92 47 121 31 151 34 226 702   

UA (%) 58.7 25.5 91.7 77.4 76.8 79.4 46.9   
 

OAA (%) 64.1             
  

 

Due to insufficient accuracy in distinguishing between jungle rubber and rubber 

plantations, both classes were then aggregated into one class, the so-called rubber land. 

With this aggregation, the classification accuracy of rubber land increased with a UA at 

about 84.6 % and PA at about 48.9 %. This led to the increase of the OA to 68.4 %. 

The classification accuracy of oil palm plantation was low in terms of the PA, at about 56.1 

%. This class was frequently confused with shrub/bush, especially for young oil palm 

plantations. A reason for that maybe that young oil palm plantations are typically 

surrounded by shrub/bush (examples are in Figure 4.9). This finding was also in line with 

the low UA of shrub/bush, a class that was frequently confused with oil palm plantations. 

According to the land use classification (Table 4.11), oil palm was the largest tree crops 

around the Harapan landscape compared to rubber. These oil palm plantations were mainly 

in the eastern part of the study area (see Figure 4.10), consisting of mostly mature oil palm 

(approximately 25-year-old). The largest area in this landscape was covered by shrub/bush, 

and then followed by secondary forests  
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Figure 4.8. a) jungle rubber, b) managed rubber plantation, c) less-managed rubber 
plantation. 

  

Figure 4.9. a) young oil palm plantation, b) mature oil palm plantation. 
 

Table 4.11. The extent of land use systems in Harapan landscape. 

Land use systems Area (ha) % 

Secondary forest 30604.99 31.1 
Rubber land 3687.78 3.7 
Oil palm plantation 17116.88 17.4 
Shrubs/bush 37667.85 38.3 
Bare land 9053.30 9.2 
Settlement 81.77 0.1 
Water body 169.25 0.2 

a)

)) 
b)

)) 

a)

)) 

b)

)) 

c)

)) 



Chapter 4 Results - Assessment of key variables of secondary rainforest 

 

 

 67 

 

Figure 4.10. Maps of Harapan landscape of a) RapidEye image with false color composite 
of RGB: 543, and b) land use systems. To highlight this, a large area of oil palm plantations 
can be seen in the map showing a large industrialization. In the southern part, secondary 
forest is preserved under the concession of Harapan rainforest where fragmented forests 
are seen in the southern area of the concession. 

4.3. Assessment of key variables of secondary rainforest 

4.3.1. Forest variables  

A forest inventory was conducted to further relate with remote sensing data to produce an 

assessment of forest variables across large areas in Harapan rainforest. Field work took 

place in August and September, 2013 (n = 29). The summary statistics for forest variables 

in the Harapan rainforest are in Table 4.12 and the typical d-distribution as well as above 

ground biomass distribution are depicted in Figure 4.11. From this figure, one sees that 

trees with dbh values between 10 and 40 cm contributed a large amount of above ground 

biomass. 

a)

)) 
b)

)) 
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Figure 4.11. Diameter and above ground biomass distribution in the Harapan rainforest 
from n = 29, where one sample plot is a cluster of two subplots of 1000 m2.  
 
Table 4.12. Major mensurational characteristics of the study area in Harapan rainforest 
from n = 29. 

Forest structures Range Mean SE SE (%) CI 

AGB (ton/ha) 35.26 – 446.89 238.82 19.32  8.1 238.82 ± 39.56 

BA (m2/ha) 6.80 – 42.56 23.55 0.53  2.2 23.55 ± 1.08 

dq (cm) 7.21 – 27.26 17.06 0.86  5.1 17.06 ± 1.76 

N (trees/ha) 510 - 3145 1321 110  8.3 1321 ± 225.28 

  
4.3.2. Prediction of forest variables from remote sensing data per plot and validation 

According to the feature selection as a result of a stepwise exhaustive search and model 

fitting through multiple linear regressions, the final models were chosen to predict the forest 

variables as shown in Table 4.13. For each prediction, models for AGB, BA, and dq were 

obtained with Adj. 𝑅2 of 0.68, 0.56, and 0.50, respectively. The lowest prediction quality 

was found for the N with Adj. 𝑅2 of 0.24. All the predictor variables were significant in 

predicting AGB, G, dq, and N, with p-value < 0.1. Among these selected predictor 

variables, texture indices were mostly chosen for the model prediction of AGB, BA, and 

dq. All predictor variables were different for each model prediction except TX9_ASM 

which built the model prediction for AGB and BA. It indicated that texture variable of 

angular second moment (ASM) using moving window size of 9 has a remarkable role that 

needs to be further investigated. 
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Table 4.13. Linear regression analyses for each forest variable.  

Dependent 
variables 

Independent 
variables 

Estimate 
Std. 

Error 
Pr(>|t|) Adj. 𝑹𝟐 VIF 

AGB     0.68  

 (Intercept) 10361.75 2180.23 8.62E-05   

 CRM -435.20 77.85 1.09E-05  1.2 

 TX9_ASM 61.64 14.38 0.000275  2.31 

 TX9_VAR -1491.30 288.06 3.01E-05  8.06 

 TX15_ENT -382.36 89.90 0.000300  6.02 

 TX15O_SD -8915.72 2542.25 0.001895  4.58 

       

BA     0.56  

 (Intercept) 203.709 37.4395 1.37E-05   

 NDVI -189.82 37.9334 4.11E-05  1.58 

 TX9_ASM 7.0001 1.3429 2.43E-05  2.36 

 TX15_ASM -2.041 0.4465 0.000123  5.73 

 TX15_CORR -206.58 56.3389 0.001217  4.34 

       

dq     0.50  

 (Intercept) -76.796 20.518 0.000956   

 NDVI_RE 37.169 7.336 3.14E-05  1.23 

 TX3_VAR 24.074 8.14 0.006684  9.46 

 TX9O_SD -375.3 161.874 0.028893  9.20 

       

N     0.24  

 (Intercept) 6178 1582 0.000597   

 CGM -19259 5902 0.003077  1.30 

  B3 874873 483042 0.081684   1.30 

 

As can be seen in Figure 4.12 (a-d), the model predictions of AGB, BA, and dq were 

superior compared to that of N. They have 𝑅2 values of > 0.5, i.e. 0.73, 0.62, and 0.55 for 

AGB, BA, and dq, respectively. In fact, a high deviation of the regression line from 1:1 line 

for N was observed. From the results of the model prediction, the mean value of AGB was 

predicted to be smaller than the observed AGB at 237.77 ton/ha. For BA, the mean value 

was predicted with a similar value to the observed BA at 23.49 m2/ha. This was also found 

for the dq prediction with a similar mean value to the observed dq at 17.02 cm. The 

predicted mean value of stand density was, however, predicted to be smaller than the 

observed stand density at 1316 trees/ha. Given the plots of residual versus predicted 

dependent variables as shown in Figure 4.12 (e-h), it can be seen that the residuals increase 

with increasing values of the dependent variables.  
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Figure 4.12. Predicted versus observed values and residual versus predicted values of 
AGB, BA, dq, and N for the n = 29 measured field sample plots. 

a) e)

b) f)

c) g)

d) h)
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Additionally, cross validation was done. The 𝑅𝑀𝑆𝐸𝑟 of AGB, BA, and dq was lower, at < 

30 %, than those of N as shown in Table 4.14. The 𝑅𝑀𝑆𝐸𝑟 of N was the highest, at 40 %. 

The potential reason for the lowest prediction quality of N is discussed in the next chapter. 

Table 4.14. The cross-validation of each forest variable based on LOOCV. 

 

 

   

 

Regionalization was only done for AGB, BA, and dq, as can be seen in Figure 4.14. A map 

of N was not produced due to the low model prediction with 𝑅2 < 0.5 and high 𝑅𝑀𝑆𝐸𝑟. 

Negative values occurred and were then replaced with 0. From the enlarged frame, one 

might expect to find similar pattern between AGB and BA. However, it is not seen from 

this figure. The reason could be explained by the imperfect model prediction for both 

variables which does not adequately represent the observed data. Therefore, the similar 

pattern of AGB and BA distribution on the regionalization map cannot be expected.      

 

Figure 4.13. The histograms of a) AGB, b) BA, and c) dq. Frequency shows the number 
of pixels. 
As the result of regionalization, the histograms that show the frequencies (in pixel) of the 

respective variable values are depicted in Figure 4.13: the AGB values were mostly found 

Dependent variables 𝑹𝑴𝑺𝑬 𝑹𝑴𝑺𝑬𝒓 (%) 

AGB 64.02 ton/ha 26.8 

BA 6.09 m2/ha 25.9 

dq 3.23 cm 18.9 

N 528 trees/ha 40 
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in the range of 0 - < 600 ton/ha. The BA values were mostly found in the range between 0 

- < 50 m2/ha, while the dq values were mostly found in the range between 0 – < 40 cm. 

These figures allow us to compare with other forest areas to give insight about the forest 

resources. 

 
 
 
 



Chapter 4 Results - Assessment of key variables of secondary rainforest 

 

 

 73 

 
Figure 4.14. The forest variables maps of a) AGB, b) G, and c) dq. The enlarged frame shows an area of interest depicting the spatial distribution of 
AGB, BA, and dq. From the respective class categories, a priority area can be identified to take further action related to forest conservation and restoration.  



 

 

Chapter 5 
Discussion 

 

 

5.1. Monitoring land use systems 

Monitoring land use systems is necessary because it provides important baseline 

information for historical land use change analyses. In this study, time series of land use 

maps were analyzed for the 1990-2013 period, which provided information regarding the 

transformation of land use systems and temporal dynamics of fragmentation as well as the 

causes of deforestation. Temporal dynamics of fragmentation was only analyzed for the 

whole Jambi Province in this study. It is recommended for the future study to analyze the 

fragmentation at each district. In this way, the spatial pattern of land use transformation can 

provide information on which district the dynamics is prominent.  

The time series of land use maps were the major source, in which they were used to analyze 

the change in land use systems and spatial patterns within Jambi province at four different 

points in time: 1990, 2000, 2011, and 2013. The accuracy assessment of the map based on 

ground truthing data was only available for the 2013 map, where the OA reached 78.2 %. 

In this study, map validation based on ground truthing data was not possible for the earlier 

maps from 1990, 2000, and 2011. The earlier maps were all produced in the later years and 

ground truthing data were only able to be collected in 2014 to validate for the 2013 map. 

Therefore, the accuracy of earlier maps was assumed to be similar to the 2013 map, as the 

applied methodology was also similar (Caldas et al., 2015; Villamor et al., 2013).  

There are many studies have been done to analyze the land use change that are based on 

time series of remote sensing data. However, few studies had analyzed the land use change 

in the Jambi province. In regard to the comparison of the extent of land use change, only 

the area loss of forests from 2000 to 2011 in this study can be compared with other studies 

by Margono et al. (2012) and Hansen et al. (2013). Both studies observed the loss of forest 

covers based on Landsat images as well. In the study of Margono et al. (2012), the loss of 

forest cover in Jambi province, including primary intact and primary degraded (secondary) 

forests within a slightly different period, between 2000 and 2010, was found to be around 
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0.30 Mha. The terms of primary intact and primary degraded forests used by Margono et 

al. share a similar definition with the terms of primary and secondary forests used in present 

study. In the present study, the loss of forest cover for the period of 2000 to 2011, including 

primary and secondary forests, was slightly different, at around 0.34 Mha (Appendix A.5.). 

Nonetheless, it was greatly different when compared to the results presented by Hansen et 

al. (2013), where the decrease of forests for the period of 2000-2011 was at around 0.87 

Mha. The forest cover map produced by Hansen et al. (2013) was actually criticized by 

Tropek et al. (2014), arguing that the forest cover areas are overestimated. Tropek et al. 

(2014) found that typical plantations (e.g. rubber, coconut, oil palm, etc) were interpreted 

as forests. In this case, the forest dynamics by Hansen et al. (2013) were based on the 

definition of forest as tree cover including “commercial forestry dynamics” (Margono et 

al., 2014). The calculation of forest loss included the clearing of oil palm and forest 

plantations and, thus, it might produce high forest loss. 

The present study documented a remarkable decrease in forest areas in the Jambi province 

between 1990 and 2013, which is also pointed out by Drescher et al. (2016). Primary forests 

were mainly transformed into secondary forests, while secondary forests were mainly 

transformed into rubber and oil palm plantations. This means that the expansion of tree 

crops came at the expense of secondary forests, particularly between 1990 and 2000. 

Furthermore, oil palm plantation expansion also took over rubber plantation areas, 

indicating high profitability of oil palm plantation (see Table 4.2), which corresponds to 

the results of the study by Gatto et al. (2015). They studied the land use dynamics and oil 

palm expansion in Jambi province based on village surveys in 90 villages with data from 

1992 to 2012. Apart from rubber land, they found that oil palm plantations were mainly 

grown in formerly-fallow land. According to their definition, fallow land represents “over-

logged forests or unproductive plantation land”, also associated with swidden agriculture. 

Based on historical land use maps from 1990 to 2013, the present study also found that oil 

palm plantations came at the expense of agricultural land (Table 4.2). 

However, Gatto et al. (2015) found that oil palm expansion did not mainly come at the 

expense of secondary forests, even though they found the correlation that deforestation 

occurred considerably when oil palm plantations expanded. This contradicting finding can 

be interpreted as resulting from some limitations that were also mentioned in their study. 

Principally, the drawbacks of their survey data come when they asked interviewees to recall 

land use systems from ten to twenty years back. Inconsistencies in the “perceptions, 

definitions, and memories” are likely to be present (Gatto et al., 2015). Therefore, they 



Chapter 5 Discussion - Monitoring land use systems 

 

 

     76 

stated that the accuracy of land use information based on surveys is lower than that from 

remote sensing data. Moreover, it should be considered that the approach of ‘wall-to-wall’ 

mapping provides information on the extent of the change covering the whole study area, 

which cannot be covered by a survey that is based on a sampling approach. 

As can be seen in Table 4.2, the gain of area of oil palm plantations in 2013 was higher 

than that of rubber plantations. This is driven by greater profits from oil palm cultivation 

due to lesser labor costs and faster returns, considering that the harvesting of palm oil takes 

four years from the first planting while it takes around seven to ten years to harvest rubber 

from the first planting (Schwarze et al., 2015). The expansion of oil palm plantations 

showed a continuous increase of mean patch size, which indicates massive industrialization 

from 1990 to 2013. The transmigration program in the late 1980s maybe one reason for 

that, as the government provided patches of land of about 2.5 ha to transmigrants for their 

settlement which included areas on which to grow profitable oil palm (Gatto et al., 2015; 

GoI, 1986). Thus, the farmers grew oil palm plantations next to oil palm companies that 

were either publicly- or privately-owned following the Nucleus Estates and Smallholders 

(NES) scheme. Through this scheme, the smallholders who grew their palm oil could get 

the benefit of processing their fruits soon after the harvest in the palm oil mill established 

by the companies (Feintrenie et al., 2010). In addition to the contracted farmers, the 

independent smallholders who were not involved in the NES scheme or other kind of 

contracts with companies tended to increasingly also grow palm oil. Starting in the mid-

1990s, they grew palm oil surrounding the established oil palm plantations because of better 

access to palm oil mills (Euler et al., 2015). This fact explains the increase of mean patch 

sizes and the aggregation index of oil palm expansion. The above-mentioned government 

programs such as transmigration followed by NES scheme had brought a notable impact 

on the land use dynamics. It is seen that the expansion of profitable plantations at the cost 

of nature took place to improve wealth and income.   

The spatial pattern of rubber plantations did not change much during the period of 1990-

2013 as evidenced by the metrics of mean patch size and the aggregation index. This can 

be understood with the evidence that rubber trees were mostly grown by smallholders (83 

%) while oil palm plantations were mostly owned by large-scale companies (66 %) (Susila 

1998, in Kartodihardjo and Supriono 2000). These large enterprises have more options to 

expand their plantations because of larger capitals. However, rubber plantations were still 

the dominant crop with the largest area covering Jambi province, with around 17.4 % of 

the total area in 1990 and 18.6 % in 2013 (see Table 4.1). The reason for this could be that 
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growing rubber is common for smallholder farmers and was cultivated much earlier. 

Furthermore, rubber farmers are not dependent on the mills, which belong to companies, 

for the processing of their harvest as are the palm oil farmers (Ketterings et al., 1999). That 

is, rubber farmers are more independent. When changing the land into oil palm, they would 

be highly linked to and dependent on the large companies. 

Regarding deforestation, the lowland forests were most affected because of easy access. 

According to the empirical model, variables that were most associated with deforestation 

were rubber and oil palm productivity. This finding corresponds to the expansion of both 

plantation types. In our model that related district-wise socio-economic variables to 

deforestation, the population density was negatively correlated to deforestation which came 

as a surprise. In fact, DeFries et al. (2010), who also looked at the variables related to 

deforestation from 2000 to 2005 across 41 countries in the tropics, found the same trend of 

population growth with a negative coefficient. In contrast to overall population growth, 

they found that urban population growth was associated with deforestation. They argued 

that this was an impact resulting from urbanization, where the demand related to biofuel as 

an agricultural product from rural areas had increased and thus threatened the surrounding 

tropical forests.  

Overall, it is a result of these analyses that the expansion of rubber and oil palm plantations 

came at the expense of secondary forests in the Jambi province in the period of 1990-2013. 

This transformation came with a decline of biomass, as well as plant and animal diversity 

(Drescher et al., 2016) which brings a negative impact to the environment. However, it also 

increased household welfare. In particular, the adoption of oil palm plantations as the 

source of livelihood across the Jambi province had a positive impact on consumption 

expenditure, including food and non-food expenditure, along with calorie consumption, 

both of which indicate a better welfare (Euler et al., 2015). In fact, the transformation of 

rubber plantations into oil palm plantations described in this study indicates that oil palm 

provides more economic value than rubber plantations. From the period of 2004-2012, the 

price of the palm oil fruit increased from 64 USD/ton to 133 USD/ton (108 %). This 

increase was higher than the price of natural rubber that was about 467 USD/ton in 2004 

and 877 USD/ton in 2012 (88 %) (FAOSTAT, 2016). Additionally, in that same period 

from 2004 to 2012, the demand for oil palm from the three biggest importers had increased 

from about 11 to 20 Mt (by about 75 %), while the demand for natural rubber rose only 

from about 0.7 to 0.8 Mt (by about 14 %) (FAOSTAT, 2016). The export value of palm oil 

in Indonesia was higher than the export value of crumb rubber (= processed rubber) in 
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2014, at about 17.5 billion USD for palm oil and 4.5 billion USD for crumb rubber (BPS, 

2015). 

While there are many economic benefits of palm oil production, the downside is the 

associated environmental change. Lately NGOs and global conservationists have decried 

the expansion of oil palm plantations as it is rapidly converting natural forests into 

plantations (EIA 2014; Greenpeace 2016; Koh and Wilcove 2008; Peh et al. 2006; Wilcove 

et al. 2013). In response to this issue, the Roundtable on Sustainable Palm Oil (RSPO) has 

established a voluntary certification scheme for sustainable palm oil production with the 

objective of meeting socio-economic and ecological standards. One principle of this 

certification is to use cleared or degraded areas instead of forests to grow oil palm (RSPO, 

2013). However, there is no clear definition of ‘degraded area’ found in Indonesian policy 

or law (WRI, 2010). World Resources Institute (WRI) identified that NGOs, private, 

government and academics in Indonesia used ‘degraded forest’ 7 , ‘waste land’ 8 , or 

‘abandoned land’9 as terms to represent degraded land. Ruysschaert et al. (2011) proposed 

a severely degraded land as a location to grow palm oil instead of leaving the area 

abandoned. They defined this severely degraded area as fallow land that is covered only by 

shrubs and bushes. This was because of the gain of above-ground carbon stock, which can 

reach  on average up to 40 ton/ha during one cycle of oil palm plantations (i.e. 25 years), 

while the maximum is around 60-80 ton/ha for mature palm oil (Ruysschaert et al., 2011). 

However, as mentioned above also, degraded (secondary) forest can be interpreted as 

degraded land. This interpretation further impacts the exclusion of secondary forest from 

Indonesia’s forest moratorium which aims to suspend new concessions in primary forests 

and peatlands. At the first period of the forest moratorium, during the years 2011-2013, it 

was set for primary forests and also peatlands but it excluded secondary forests 

(Murdiyarso et al., 2011). The ministry’s director general of forestry planning and 

environmental governance from the MoEF, Ruandha Agung Sugariman said that secondary 

forest was excluded to provide production area (The Jakarta Post, 2015). In fact, a similar 

condition applies to the second and third extension of the moratorium for the years 2013-

2015 and 2015-2017, respectively. For Jambi province, the implementation of this policy 

had a positive impact, with the loss of primary forests remarkably decreasing in the last 

                                                        
7  Degraded forest is a secondary forest where a forest provides a reduced capacity of ecosystem services (e.g. carbon 

storage, timber production) because of the anthropogenic and environmental alteration (BP-REDD+, 2015) 
8  Waste land is also called as marginal land where the land is not profitable or does not have economic potential 

due to low productivity for agricultural activities (WRI, 2010)  
9  Abandoned land is an empty area where there is no productive utilization. For example, the land where the permit 

holder has not yet utilized it (WRI, 2010) 
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period of 2011-2013 as shown in Figure 4.1. However, the loss of secondary forests in this 

period was considerably higher than that of primary forests. This high loss of secondary 

forest can be interpreted because there was no suspension of secondary forests’ conversion. 

In order for the previously-mentioned RSPO certification of sustainable palm oil to 

succeed, a strong legal regulation and enforcement would be necessary as it is currently 

still voluntary. For instance, China and India are the major markets for oil palm but have 

been criticized because of the low concern they have in purchasing certified palm oil 

(Wilcove & Koh, 2010). In Indonesia, the government has established the MoA Regulation 

11 of 2015, which is the so-called Indonesian Sustainable Palm Oil (ISPO) (MoA, 2015). 

This regulation is mandatory for the big palm oil industries. Such commitment indicates 

government awareness in producing sustainable palm oil while protecting forest areas. 

Therefore, it is expected to reduce emissions from deforestation and forest degradation 

while maintaining the increase of overall welfare. To succeed this program, the regulation 

needs to be strongly implemented 

5.2. Evaluation of tree crops mapping using high spatial resolution images 

5.2.1. Object-based mapping  

As the expansion of tree crops comes at the expense of forest areas, monitoring these crops 

becomes a high concern for forest conservation because it provides information on the 

extent of tree crops and of the remaining forest to respective stakeholders for better land 

use planning. This information can be spatial information provided by maps that produce 

the details of tree crops and remaining forests and also portray their spatial distribution. It 

might serve as baseline information for other research on the ecosystem services, and also 

for decision makers. By knowing the information on the extent of the remaining forests, 

further regulation related to forest protection and deforestation reduction can be taken.  

Through this study, an operational approach using object-based classification was proposed 

to fulfill this need. For this approach, RapidEye satellite images with high spatial resolution 

were used as materials for image segmentation. According to the image segmentation 

results using different parameter settings, it becomes obvious that lesser number of clusters 

are produced with larger scale parameter radii (Figure 4.5), which is in line with Bo & Jing 

(2012). In fact, these authors mentioned that a larger radius might enlarge error probability. 

Thus, a way to choose the best parameter settings among the different results of 

segmentations from different parameter settings must be found. 
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In comparison to other studies that evaluated a selection of different segmentation results 

as mentioned in subsection 3.2.3, the approach proposed in the present study provides an 

objective selection to determine the best parameter settings. Another method by Smith 

(2010) is quite efficient in selecting the best settings based on the high accuracy assessment 

of land use classification. This high accuracy assessment was presented by low error rate 

produced by the model-based error provided by the RF classifier. However, this method 

focused more on the accuracy of the land use classification than on the optimization of 

image segmentation. Thus, this method ignores the evaluation of image segmentation with 

the reference objects in the field. Later evaluations were conducted by Carleer et al. (2005) 

and Marpu et al. (2010). They evaluated the image segmentation with reference objects on 

the ground. Both of these methods consider high over-segmentation to select the best 

parameter settings. However, they did not calculate the correct percentage. In fact, the 

correct percentage is also relevant as guidance to indicate the performance of segmentation 

algorithms with different parameter settings.  

In this study, the selection was evaluated by Hoover metrics, where a comparison among 

different results of segmentations and reference objects was conducted. According to the 

proposed method, a selection of optimum segmentation parameters was based on the trade-

offs between over-segmentation and correct detection. This method is more advanced than 

traditional approaches that use trial and error to choose the best image segmentation, as the 

trial and error approach is not objective in finding the best segmentation parameter settings 

(Smith, 2010). 

5.2.2. Land use classification 

In this study, land use classification was conducted using the RF classifier. This 

classification was produced with high OA according to the model-based cross validation 

but low OA according to the independent validation data. The lower OA produced by using 

independent validation data was also found by Magdon et al. (2014). To assess OA, 

independent data from the ground used to validate the land use classification is however 

always suggested to have knowledge of the map accuracy according to site-specific 

information (Foody, 2002). 

From the land use systems classification, a remarkable confusion occurred for the jungle 

rubber and rubber plantation classes. Confusion took place in the mixture of grasses and 

low woody vegetation that grew among them. This finding is in line with the study 

conducted by Ekadinata & Vincent (2011) in which they discovered that jungle rubber was 
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confused with the class of rubber plantation as well as forest because of the similarity in 

structures and, thus, similar spectral response was expected. For instance, the low 

management intensity of the rubber plantations has made the rubber trees grow with other 

vegetation and has also produced confusion with shrub/bush. Apparently, different 

management intensity has played a role in this class confusion. The confusion can also be 

in regard to the acquisition time of RapidEye images, which were captured in June during 

the dry season, when rubber trees’ defoliation (leaf-off) takes place. Therefore, spectral 

response captured by RapidEye images is mostly reflected by the shrubs, grasses, or other 

kinds of green vegetation. This could have led to the confusion among the classes of jungle 

rubber, rubber plantations and shrub/bush. Therefore, it was recommended to use high 

temporal resolution of remote sensing data to produce rubber mapping due to the evidence 

that rubber trees have such seasonal characteristics (Dong et al., 2013; Li & Fox, 2012; 

Senf et al., 2013). 

For the mapping of oil palm plantations, the information on the spatial distribution 

produced by this study is reliable with a high UA. Nonetheless, the area could be lesser 

than the existing area due to the low PA. This confusion took place because of the different 

ages among the oil palm plantations. Thus, the spectral response coming from the grasses 

that were grown among the young oil palm plantations produced confusion with the class 

of shrub/bush (Li et al., 2015). For further work, it should be considered to differentiate the 

class of oil palm into young, middle, and old. 

5.3. Assessment of key variables of secondary rainforest  

Predictions of forest variables including above-ground biomass (AGB, ton/ha), basal area 

(BA, m2/ha), stand density (N, trees/ha), and quadratic mean diameter (dq, cm) were 

assessed by combining field inventory and remote sensing data derived from RapidEye 

images. Field inventory with small sample sizes (n = 29) was conducted over a large study 

area of around 40,000 ha. 

According to the field inventory data, only the estimated mean value of AGB could be 

compared to the previous study conducted by Briggs et al. (2012) in the Harapan rainforest. 

The result of our study showed that the mean AGB value at 238.82 ton/ha is within the 

range of their values studied. Briggs et al. (2012) found that the range of AGC is between 

85 ton/ha and 141 ton/ha, where AGC is estimated at about half of AGB.  
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In regard to the model prediction that relates the forest variables and image features derived 

from RapidEye images, each model that predicted the respective forest variables contained 

a vegetation index, such as NDVI, NDVI Red-edge, CGM, or CRM (Table 4.13). These 

vegetation indices are relevant when assessing vegetation conditions (Jackson & Huete, 

1991), and, thus, improve the relation between indices derived from satellite images and 

the forest variables, particularly in the regions that have complex stand structures (Lu et 

al., 2004).  

In combination with vegetation indices, the model predictions of AGB, BA, and dq were 

mostly built with texture indices (see Table 4.13), indicating the potential role of texture 

indices. In subtropical and tropical forests with high biomass, where high species diversity 

and high heterogeneity of canopy layers are present, the canopy shadow effect increases 

(Nichol & Sarker, 2011). For this case, the texture index reduces the high difference of 

spectral reflectance due to the shadow effect (Lu & Batistella, 2005). Choosing the 

appropriate texture indices is challenging. The selection of texture features varies with 

different characteristics of landscape and satellite images used, including the use of moving 

window sizes and the image bands (Lu, 2005). In this study, the texture indices were 

computed using the NIR band for three different moving window sizes of 3x3, 9x9, and 

15x15. Different combinations of higher-moving window sizes and spectral bands were not 

tested. Therefore, it might be worthy for future work to test such different combinations to 

observe if the model prediction can be improved. 

In this study, the model prediction provided models for AGB, BA, and dq with an 

R2/𝑅𝑀𝑆𝐸𝑟 of 0.73/26.8 %, 0.62/25.9 %, and 0.55/18.9 %, respectively. RapidEye images 

used in this study obviously capture the reflectance from vegetation over secondary 

rainforest and are promising for predicting AGB, BA, and dq. However, the prediction of 

N was quite low, with an R2/RMSEr of 0.29/40 %. The insufficient model prediction of N 

is interpreted due to the complex layers that are present in the successional forests, which 

is also a typical forest within the study area (Harrison & Swinfield, 2015). Besides large 

trees, a large number of young trees are grown in this successional forest where various 

stages of degraded forest can be found. Optical sensors are more sensitive in capturing the 

reflectance coming from the top canopy than the low layers. Therefore, optical sensors are 

expected to be less sensitive when capturing information from low layers where young 

trees exist. In this case, predictions on stand density in the forest with complex layers face 

challenges. 
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Predicted forest variables using image features derived from remote sensing data are 

challenging when compared across studies. This can be explained due to the differences of 

the remote sensing data that are used, forest types, data-collection methods in the field, and 

also statistical modeling (Castillo-Santiago et al., 2010; Ozdemir & Karnieli, 2011). 

Therefore, R2 and/or 𝑅𝑀𝑆𝐸𝑟  are commonly used as indicators (Castillo-Santiago et al., 

2010). For the evaluation of 𝑅𝑀𝑆𝐸𝑟, this study did not use independent test data and the 

error estimation was done by common cross-validation LOOCV that is widely used with 

small sample sizes (Fuchs et al., 2009; Kayitakire et al., 2006; Ozdemir & Karnieli, 2011). 

For comparison with other studies, there was no study that predicts a forest variable of dq 

in the rainforests and, therefore, dq was not able to compare. However, there was one study 

found which combined field inventory data and RapidEye images to predict some selected 

forest variables in a Bavarian forest where dq was one of the variables (Wallner et al., 

2014). Their model produced R2 of 0.55 with 𝑅𝑀𝑆𝐸𝑟 of 24.9 % for a pure coniferous forest. 

This result had similar result with present study producing R2/𝑅𝑀𝑆𝐸𝑟 of 0.55/18.9 %.  

The study conducted by Wijaya et al. (2010) did predict forest variables using Landsat 

images in a concession forest in Borneo, where logging is ongoing. The 𝑅𝑀𝑆𝐸𝑟 values 

based on the model fitting through multiple linear regressions of AGB and BA in their 

study were 13.2 % and 13.3 %, respectively. These values were better than the ones 

produced in present study with a 𝑅𝑀𝑆𝐸𝑟 of AGB at 26.8 % and BA at 25.9 %. Nonetheless, 

the model produced by present study had better R2. Their model prediction was produced 

with R2 < 0.4, which is much lower than the one produced in this study at around 0.73 for 

AGB, and 0.62 for BA. It points to the fact that RapidEye images with higher spatial 

resolution than Landsat images have more ability to predict such forest variables by 

producing higher R2. 

By using similar satellite image, i.e. RapidEye images, a prediction of AGB was conducted 

by Englhart et al. (2012) in different types of forest in Borneo, which is a peat swamp forest. 

Their study found that combining field inventory and image features derived from 

RapidEye images is promising when predicting AGB, where a high R2 of 0.92 with 𝑅𝑀𝑆𝐸𝑟 

of 44% was produced from their model prediction. Compared to their study, the present 

study produced lower R2 of 0.73. Their high R2 with large sample size (n = 53) may cover 

a high variability of the surface reflectance. However, in term of covering different 

variability of the surface reflectance, the stratification of NDVI that was used in this study 

as the reference to determine the sample plots already ensured a proper representation of 

the population. 
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There was a challenge when implementing the model to produce regionalization maps due 

to negative values in the maps. Such extreme values occur when the model is applied 

beyond the observation values and therefore zero was constantly used for negative values 

(Fuchs et al., 2009). Moreover, high values also occurred even though their frequency was 

not high, as can be seen in the histogram of the images where AGB was at > 600 ton/ha, 

BA at > 70 m2/ha, and dq at > 60 cm2 (Figure 4.13). The high values of AGB also occurred 

in another study conducted by Englhart et al. (2012), in which the values of AGB reached 

more than 600 ton/ha. Therefore, they assumed those values as overestimated values, 

without doing any change of these high values. In this case, caution should be taken when 

using the regionalization maps produced in present study. The extrapolation values from 

the model could produce uncertainty for the area outside observed areas where model was 

built. In this study, multiple linear regression was used as model prediction and, therefore, 

different model prediction can be tested for the future work to see whether the model is 

able to avoid extreme values.   

The class categorization provided by the regionalization maps delivers practical 

information for a better strategy of forest management. Through the maps, areas of high 

priority can be identified to promptly take measures which strengthen forest conservation 

and restoration. For instance, an area with low above ground biomass due to high 

degradation should be prioritized for increasing the biomass through the reforestation. This 

will be useful for Harapan  rainforest where immediate conservation is necessary because 

of illegal encroachment and the expansion of oil palm plantations (Laumonier et al., 2010). 
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Monitoring of forests and land use dynamics is of great interest providing the database 

required to identify and analyze causes and impacts of land use change. In turn, this 

valuable information serves to better land use designation and planning by decision makers, 

particularly in tropical forested landscapes. Furthermore, it might contribute to developing 

polices to combat the conversion of forests and, thus, mitigating climate change as well as 

threats to the conservation of biodiversity. This study provides scientific-based knowledge 

on the monitoring of land use systems being transformed in Jambi province of Sumatra, 

Indonesia, where economic cash crops have increasingly threatened the existence of forest 

lands. In order to monitor large areas, remote sensing data combined with sample-based 

field data are therefore essential sources of information. The use of these data might 

overcome the limitation of the high-intensity of data collection, which is labor intensive 

and costly. Additionally, multi-series remote sensing data bring an advantage to 

understanding the land use change at different points in time. 

Through multi-series Landsat images within Jambi province, historical land use maps were 

available based on the visual interpretation of the images. It is evident that a loss of 

secondary forests continuously occurred from 1990 to 2013 as rubber and oil palm 

plantations expanded. The expansion of oil palm plantations, in particular, indicates a 

pattern of large-scale industrialization. The expansion of those typical tree crop plantations 

might stimulate the increase of both the crops’ productivity within the study area and, thus, 

was found to be one of the factors related to deforestation. On the other hand, the increase 

of population density was not related to deforestation. It might be informative for further 

research to differentiate the population density between urban and rural, and analyze their 

specific relation to deforestation in Jambi province. As urbanization could impact the high 

demand of agricultural products from rural areas, the increase of urban population density 

is expected to threat the surrounding forests (DeFries et al., 2010).  
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The rate of secondary forest loss has decreased over the last years; however, it was still 

higher than the loss of primary forests. Such low rates of primary forest loss indicate the 

success of a forest moratorium policy protecting the primary forests. It is therefore highly 

recommended to protect secondary forests due to their high value for providing ecosystem 

services and preserving biodiversity. For instance, to avoid the conversion of forest land, 

severely degraded land has been introduced as an alternative location for new tree crop 

plantations; however, the feasibility of land productivity is still questioned.  

For the study of the tree crop mapping, high spatial resolution satellite images, i.e. 

RapidEye images, were used. To distinguish the land use systems, the object-based 

classification was evaluated. The result of the map-accuracy assessment with ground 

truthing validation data indicated that the object-based classification produced sufficient 

accuracy in distinguishing secondary forest with high PA and UA. The classification of the 

tree crops, rubber land and oil palm plantation, produced a high UA but a low PA. For 

rubber land that includes jungle rubber and rubber plantations, the use of multi-temporal 

remote sensing images is suggested due to the seasonality characteristics of rubber trees. 

Additionally, to increase the classification accuracy of oil palm plantations, it is 

recommended to differentiate the young and mature oil palms. In this regard, the training 

area of young oil palm plantations should be cautiously determined, in which the training 

area should represent the true young oil palms since confusion with the shrub/bush class 

might arise due to the presence of grasses surrounding young oil palm plantations. 

As secondary forests are threatened by the expansion of tree crop plantations, immediate 

conservation is of high concern. To succeed the conservation, managing the forest is 

necessary. For this purpose, reliable information on the forest variables such as forest 

carbon stock is necessary. From this information, knowledge about the forest resources can 

be identified and is thus useful for taking measures towards better forest management and 

ultimately forest preservation.  

In this study, forest variables (i.e. above ground biomass, basal area, quadratic mean 

diameter, and stand density) were predicted by combining small sample sizes of forest 

inventory and remote sensing data from high spatial resolution RapidEye images. The 

proposed approach produced sufficient R2 and 𝑅𝑀𝑆𝐸𝑟 for predicting the forest variables 

(i.e. above ground biomass, basal area, and quadratic mean diameter). The approach is also 

operational and can be applied particularly to large forest areas. However, further studies 

need to be conducted to find better approaches for predicting the stand density as this was 
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unsuccessful in this study; this can be attributed to the lack of optical sensor to capture 

information in the forest with its complex layer as discussed in the chapter before. The 

regionalization maps generated based on the model prediction might further support the 

delivering of information to forest managers and other decision-makers.  
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Appendices 

A.1. Land use mapping derived from Landsat images 

Time-series data from five tiles of Landsat images were collected to map the land use 

systems in the Jambi province. Of these images, Landsat TM from 1989-1990, TM/ETM+ 

from 1999-2001, TM/ETM+ from 2009-2011, and OLI from 2013 were prepared to 

produce historical land use maps for the years 1990, 2000, 2011, and 2013, respectively.  

In the image pre-processing phase, image-to-image registration was conducted as the first 

step. In this process, the master images were the most recent images (the 2013 images) and 

the slave images were the other respective images. As the study area was located in the 

tropics, the Landsat images were highly covered by cloud and cloud-shadow, both of which 

had to be removed. In addition, the Landsat images with acquisition time after May 31st, 

2013 have strips consisting of no data because of the Scan Line Corrector (SLC) failure. 

Therefore, the procedure of filling the gaps was also carried out. Afterwards, image 

enhancement using the histogram matching method was implemented before mosaicking 

the five tiles of Landsat images. Finally, the mosaics of Landsat images were available for 

each year of 1990, 2000, 2011, and 2013. 

For the image classification, techniques of automatic and visual image interpretation to 

derive the land use classes were implemented. Initially, an automatic technique was 

implemented to determine vegetation and non-vegetation classes. Secondly, further 

classification of land use systems was carried out using visual interpretation. The false color 

composite images of Landsat TM/ETM+ with an RGB combination of red: band 5, green: 

band 4, blue: band 3, and of Landsat OLI with an RGB combination of red: band 6, green: 

band 5, blue: band 4 were displayed throughout the visual interpretation. From those 

composite images, visual interpretation and on-screen digitization were performed for each 

land use class by competent image interpreters. As a reference for the interpretation, a 

guideline of the land use classification key for 23 land use classes was used, which was 

provided by the Indonesian Ministry of Forestry (MoF, 2008). Additional classes like 

jungle rubber, rubber, and oil palm plantations were also determined. In order to produce 

maps with high accuracy, visual interpretation was assisted with data from field 

observations, local knowledge, and RapidEye images. Finally, the minimum mapping unit 

(MMU) of the resulting land use maps was 6.25 ha (0.25 cm2 at a scale of 1:50,000). 
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A.2. Confusion matrix of land use classification derived from Landsat images based on ground truthing data (the numbers are rounded to the nearest 
tenth). 

  
Classification   

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Total 
PA 
(%) 

R
ef

er
en

ce
 

1 
Secondary dryland 
forest 

19     1 1      1    22 86.4 

2 
Secondary 
mangrove forest 

 4               4 100.0 

3 
Secondary swamp 
forest 

  11   2    2       15 73.3 

4 Jungle rubber    13  8 3     1 1   1 27 48.1 
5 Plantation forest     12  1          13 92.3 
6 Rubber plantation    3 1 46 2      1    53 86.8 
7 Oil palm plantation 1     5 45 2   1  4   1 59 76.3 
8 Dryland agriculture        8         8 100.0 

9 
Mixed dryland 
agriculture 

        7        7 100.0 

10 Water body          3       3 100.0 
11 Settlement      2   1  13 1  1   18 72.2 
12 Shrub/bush       1 1    20 2 1 1  26 76.9 
13 Swamp bush       1  2 1 2  17    23 73.9 
14 Paddy field      1      1  6  1 9 66.7 
15 Mining               3  3 100.0 
16 Bare land 1           1    6 8 75.0 

  Total 21 4 11 16 13 65 54 11 10 6 16 24 26 8 4 9 298  

  UA (%) 90.5 100.0 100.0 81.3 92.3 70.8 83.3 72.7 70.0 50.0 81.3 83.3 65.4 75.0 75.0 66.7   

  OAA 78.2                  

  Kappa 0.8                  
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A.3. An example of the calculations for each forest variable from the field measurement 

This is an example for calculating the target variables (i.e. AGB, BA, N, and dq) of two 

plots (i.e. Plot 1 and Plot 2). The diameter at breast height (dbh) is measured for different 

sized subplots (i.e. 25 m2, 100 m2, 1000 m2). For the smallest nested subplot (i.e. 25 m2), 

the expansion factor (EF) is 400; for the second nested subplot (i.e. 100 m2), the EF is 100; 

and for the largest subplot (i.e. 1000 m2), the EF is 10. At each nested subplot, AGB and 

BA were initially calculated per tree. AGB and BA are then calculated per ha by 

multiplying the value of each tree with the EF as illustrated in Table 1. 

Table 1. An illustration of AGB and BA calculation. The measurement of dbh is classified 
in three different nested subplots of class i (i = 1, 2, or 3 where each of i represents nested 
subplot of 25 m2, 100 m2, 1000 m2, respectively). In this table, xi is dbh in class i, wi is the 
AGB value in class i, and gi is the BA value in class i. 

PLOT SUBPLOT PLOT_ID 
dbh 
(cm) 

AGB 
(kg/tree) 

EF 
BA 

(cm2/tree) 
AGB 

(kg/ha) 
BA (m2/ha) 

1 A 1A x1 w1 400 g1 400w1 400g1x10-4 
1 A 1A x2 w2 100 g2 100w2 100g2x10-4 
1 A 1A x1 w1 400 g1 400w1 400g1x10-4 
1 A 1A x2 w2 100 g2 100w2 100g2x10-4 
1 A 1A x3 w3 10 g3 10w3 10g3x10-4 
1 B 1B x3 w3 10 g3 10w3 10g3x10-4 
1 B 1B x3 w3 10 g3 10w3 10g3x10-4 
1 B 1B x1 w1 400 g1 400w1 400g1x10-4 
1 B 1B x2 w2 100 g2 100w2 100g2x10-4 
1 B 1B x2 w2 100 g2 100w2 100g2x10-4 
2 A 2A x1 w1 400 g1 400w1 400g1x10-4 
2 A 2A x2 w2 100 g2 100w2 100g2x10-4 
2 A 2A x1 w1 400 g1 400w1 400g1x10-4 
2 A 2A x2 w2 100 g2 100w2 100g2x10-4 
2 A 2A x3 w3 10 g3 10w3 10g3x10-4 
2 B 2B x3 w3 10 g3 10w3 10g3x10-4 
2 B 2B x3 w3 10 g3 10w3 10g3x10-4 
2 B 2B x1 w1 400 g1 400w1 400g1x10-4 
2 B 2B x2 w2 100 g2 100w2 100g2x10-4 
2 B 2B x2 w2 100 g2 100w2 100g2x10-4 

 
Each respective value per ha of AGB, BA, and N for the different nested subplots was then 

added to obtain the total AGB, BA, and N as illustrated in Table 2. The value of stand 

density (N) is the total number of trees at each nested subplot.  
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Table 2. The total values of AGB, BA, N, and dq for each nested subplot. 

PLOT_ID AGB (kg/ha) BA (m2/ha) N (trees/ha) 

1A 800w1 800g1x10-4 800n1 
1A 200w2 200g2x10-4 200n2 
1A 10w3 10g3x10-4 10n3 
1B 400w1 400g1x10-4 400n1 
1B 200w2 200g2x10-4 200n2 
1B 20w3 20g3x10-4 20n3 
2A 800w1 800g1x10-4 800n1 
2A 200w2 200g2x10-4 200n2 
2A 10w3 10g3x10-4 10n3 
2B 400w1 400g1x10-4 400n1 
2B 200w2 200g2x10-4 200n2 
2B 20w3 20g3x10-4 20n3 

The total value of the three nested subplots is used to obtain the AGB, BA, and N per ha of 

each subplot (i.e. 1A, 1B, 2A, 2B). For instance, the total AGB of subplot 1A is 

800w1+200w2+10w3. From the total of BA and N values at each subplot, dq can be 

calculated for each subplot using equation (5) as mentioned in subsection 3.3.3.  

A.4. The overlap area between forest cover (Hansen et al., 2013) and land use systems 
(present study) in 2000. 

Land use systems in 2000 
(present study) 

Forest cover in 2000 (Hansen et al., 2013) 

Area (ha) % 

Agriculture 773,690.8 17.2 
Jungle rubber 22,541.0 0.5 
Oil palm plantation 480,888.4 10.7 
Others 59,157.3 1.3 
Plantation forest 171,995.0 3.8 
Primary forest 885,018.4 19.6 
Rubber plantation 812,638.4 18.0 
Secondary forest 860,880.9 19.1 
Shrub/bush 441,759.2 9.8 
Total 4,508,569.3 100 

 
A.5. The loss and gain of primary forest and secondary forest in the Jambi Province. 

 
 
 
 
 
 
 
 

  Primary forest Secondary forest 

  Loss (ha) Gain (ha) Loss (ha) Gain (ha) 

1990-2000 452,564.4 4,758.9 383,605.5 346,413.0 

2000-2011 61,285.3 322.5 277,263.3 52,550.0 

2011-2013 1,070.8 0.0 23,188.4 726.2 
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A.6. Hoover metrics scoring 

For each metric, the descriptions of the scoring are explained below following Hoover et 

al. (1996). The notations for each equation are explained in the Methods Chapter (see 

Section 3.2.3.). 

1. Correct detection (CD) 

score 𝑂𝑚𝑛 = T x (min ( 𝑂𝑚𝑛/ T x 𝑃𝑛𝑖
, 𝑂𝑚𝑛/ T x 𝑃𝑚𝑖

)) 

CDi = score 𝑂𝑚𝑛 x 𝑃𝑛𝑖
 

scoreCD = ∑ CDi 
k
𝑖=1 / ∑ 𝑃𝑛𝑖

 k
𝑖=1  

where k ≥ 1 and k shows the pair number between the segmented and reference object 

that is being assessed. 

2. Over-segmentation (OS) 

score 𝑂𝑚𝑖𝑛 = 𝑂𝑚𝑖𝑛 x ( 𝑂𝑚𝑖𝑛-1) 
 
sum_score 𝑂𝑚𝑖𝑛=  ∑ (𝑂𝑚𝑖𝑛 x ( 𝑂𝑚𝑖𝑛 − 1)x

𝑖=1 ) 
where 2 ≤ x ≤ M  
 
scoreOSi = 1 - sum_score 𝑂𝑚𝑖𝑛/ (𝑃𝑛𝑖

x (𝑃𝑛𝑖
-1)) 

OSi = scoreOSi x 𝑃𝑛𝑖
 

 
scoreOS = ∑ OSi

k
𝑖=1 / ∑ 𝑃𝑛𝑖

 k
𝑖=1  

where k ≥ 1 and k shows the pair number between the segmented and reference object 
that is being assessed. 
 

3. Under-segmentation (US) 

score 𝑂𝑚𝑛𝑖
 = 𝑂𝑚𝑛𝑖

 x (𝑂𝑚𝑛𝑖
-1) 

sum_score 𝑂𝑚𝑛𝑖
=  ∑ 𝑂𝑚𝑛𝑖

 x ( 𝑂𝑚𝑛𝑖
− 1)x

𝑖=1  
 
scoreUSi = 1 - sum_score 𝑂𝑚𝑛𝑖

/( ∑ 𝑃𝑛𝑖
x ( ∑ 𝑃𝑛𝑖

 x
𝑖=1 − 1)x

𝑖=1 ) 
USi = scoreUSi x ∑ 𝑃𝑛𝑖

 x
𝑖=1  

where 2 ≤ x ≤ N  
 
scoreUS = ∑ USi 

k
𝑖=1 / ∑ 𝑃𝑛𝑖

 k
𝑖=1  

where k ≥ 1 and k shows the pair number between the segmented and reference object 
that is being assessed. 
 

4. Missed detection (M) 

Mi = ∑ 𝑃𝑛𝑖
 x

𝑖=1  

where 2 ≤ x ≤ N  

scoreM = ∑ Mi 
k
𝑖=1 / ∑ 𝑃𝑛𝑖

 k
𝑖=1  
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where k ≥ 1 and k shows the pair number between the segmented and reference object 

that is being assessed. 

Assuming that there are four pairs reference objects (Rn) and objects from machine 

segmentation (Rm), each object is labelled, and 0 is the background that has no object. In 

this case, T = 0.75 is chosen. 

 

Pair 1 
𝑃𝑛1

  = 2500 pixels 

𝑃𝑚1
 = 625 pixels 

𝑃𝑚2
 = 1875 pixels 

Metrics classification: 

 
Correct detection (CD) 

score 𝑂𝑚𝑛 = 0.75 x (min (1875/1875, 1875/1406.25)) 

   = 0.75  

CD1 = 0.75 x 2500 

       =  1875 

Over-segmentation (OS) 

scoreOS1 = 1 - 3903750 / (2500x (2500-1) 

    = 0.375 

OS1 = 0.375 x 2500 
        = 937.5 
 
 

Rn Rm 𝑂𝑚𝑛 T x 𝑃𝑛𝑖
 T x 𝑃𝑚𝑖

 Classification score 
𝑂𝑚𝑖𝑛/𝑂𝑚𝑛𝑖

 
1 1 625 1875 468.75 OS 390000 
1 2 1875 1875 1406.25 CD, OS 3513750 
                                                                                  sum_score 𝑂𝑚𝑖𝑛 3903750 

 

Reference object Segmented image 

0 

1 2 

4 5 3 

 

1 

2 

3 

4 5 

0 
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Pair 2 
𝑃𝑛2

  = 1250 pixels 

𝑃𝑚3
 = 625 pixels 

Metrics classification: 

 

M1 = 1250 

Pair 3 
𝑃𝑛3

  = 625 pixels 

𝑃𝑚4
 = 625 pixels 

Metrics classification: 

 

Correct detection (CD) 

score 𝑂𝑚𝑛 = 0.75 x (min (625/468.75, 625/468.75)) 

      = 1  

CD2 = 1 x 625 

       = 625 

Pair 4 
𝑃𝑛4

= 625 pixels 

𝑃𝑛5
= 625 pixels 

𝑃𝑚5
 = 1250 pixels 

Metrics classification: 

Under-segmentation (US) 

scoreUS1 = 1 - 780000 / (1250x (1250-1) 

    = 0.5 

US1 = 0.5 x 1250 
        = 625 

Rn Rm 𝑂𝑚𝑛 T x 𝑃𝑛𝑖
 T x 𝑃𝑚𝑖

 Classification score 
𝑂𝑚𝑖𝑛/𝑂𝑚𝑛𝑖

 
2 3 625 937.5 468.75 M - 
2 - 625 937.5 - M - 

Rn Rm 𝑂𝑚𝑛 T x 𝑃𝑛𝑖
 T x 𝑃𝑚𝑖

 Classification score 

𝑂𝑚𝑖𝑛/𝑂𝑚𝑛𝑖
 

3 4 625 468.75 468.75 CD - 

Rn Rm 𝑂𝑚𝑛 T x 𝑃𝑛𝑖
 T x 𝑃𝑚𝑖

 Classification score 
𝑂𝑚𝑖𝑛/𝑂𝑚𝑛𝑖

 

4 5 625 468.75 937.5 US 390000 
5 5 625 468.75 937.5 US 390000 
                                              sum_score 𝑂𝑚𝑛𝑖

 780000 
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scoreCD = (1875 +625)/5625 
                = 0.4444 
scoreOS = 937.5/5625 
               = 0.1667 
scoreUS = 625/5625 
               = 0.1111 
scoreM = 1250/5625 
             = 0.2222 
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