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Abstract. Mycobacterium tuberculosis (Mtb) is a causative pathogen of tuberculosis (TB) that emerges as one 
of the deadliest communicable diseases in Indonesia. The quest for protein biomarkers for TB has been 
conducted in order to develop a TB diagnostic kit and a TB vaccine. One of the abundant biomarkers in 
the TB infected human serum is the Ag85B antigen. In this study, we employed immunoinformatic 
prediction tools such as Ellipro and VaxiJen to predict the B-cell epitopes of Ag85B wildtype and 
multidrug resistance type (mutant). We then performed molecular docking simulation to evaluate the 
predicted epitopes using HADDOCK. The screening of both continuous and discontinuous B-cell 
epitopes using criteria-based analysis resulted in the eight linear epitopes and two conformational epitopes 
in Ag85B with high antigenicity. The in silico analysis showed no major differences between Ag85B 
wildtype and Ag85B mutant, implying Ag85B a good target for TB vaccine candidates but not for a specific 
biomarker that differentiates wild-type and mutant TB. 
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INTRODUCTION 
 
Tuberculosis (TB) is a significant public health 
threat worldwide, causing high morbidity and 
mortality (Zumla et al., 2013). Detecting active TB 
cases is challenging and mostly relying 
predominantly on sputum analysis, including acid-
fast Bacillus (AFB) smear microscopy (Ryu, 2015) 
and Mycobacterium tuberculosis (Mtb) culture, both of 
which have only moderate sensitivity and 
specificity and long turnaround time (Sharma et 
al., 2012). 

The emergence of multidrug-resistance 
tuberculosis (MDR-TB) represents a growing 
threat to public health and economic growth 
worldwide. The WHO has reported that the 
MDR-TB cases increased by more than 20% 
annually. The increasing TB cases, if not all, could 
be due to the improvements in rapid diagnostics 
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and phenotypic drug susceptibility testing (Lange 
et al., 2018).  

Ag85 is a virulence factor in TB, which 
appears as a complex to bind with fibronectin 
(Fn) protein in order to assist the attachment and 
invasion of Mtb into human macrophages (Kuo et 
al., 2013). It is a mycolyltransferase that comprises 
of three proteins: Ag85A, Ag85B, and Ag85C. 
The first two proteins are the predominant 
component of the complex for about 60% of total 
culture fluid proteins from Mtb H37Rv to which 
the concentration of Ag85B higher than Ag85A 
(Wang et al., 2012). The Ag85B can be detected in 
the culture fluid protein after three days (Zhang et 
al., 2018). Therefore, focusing on Ag85B as the 
target biomarker is beneficial based on its quantity 
and its activity.  
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Previous study reported that specific mutation 
of Ag85B in BCG strain may be used to 
differentiate Mycobacterium bovis and BCG strains 
from Mtb strains (Jiang et al., 2015).  However, to 
the best of our knowledge, no information 
regarding the difference of B-cell epitopes of 
Ag85B wild type and mutant has been reported 
before.  In this study, we predicted and evaluated 
the differences between B-cell epitopes of Ag85B 
from wildtype and mutant strain as well as their 
antigenicity using immunoinformatics tools. The 
result of this study will be beneficial in designing 
a new strategy of the developing detection and 
prevention methods of TB infection. 
 
 

MATERIALS AND METHODS 
 
 

Protein structure preparation 
The sequences of Ag85B of Mtb for wild-type and 
mutant were retrieved from UniProt with the 
primary accession code P9WQP1 and Q847N4. 
We performed structure prediction using I-
Tasser, which adopt multiple threading 
approaches to produce the full-length protein 
structure (Yang et al., 2015). The BLAST search 
against the Protein Data Bank using the MRS 
web-server was used to find the correct template 
for structure prediction (Joosten et al., 2010). The 
YASARA energy minimization was employed to 
fix the bad stereochemistry (Krieger et al., 2009) 
of the structural model for wildtype and mutant 
Ag85B. On the other hand, the structure of the 
variable region of the heavy chain (VH) and light 
chain (VL) of ScFv α-Ag85B (KR101631054B1., 
2019) was built using Prediction of 
Immunoglobulin Structure (PIGSpro) with the 
option of the same canonical structure to find the 
right template (Lepore et al., 2017). The PDB code 
of 1W72 and 5MES were the chosen template for 
VH and VL, respectively. Energy minimization 
with YASARA was used once more to obtain the 
better structure of the ScFv anti-Ag85B antibody. 
We also identified the antibody binding region 
(ABR) using an automated tool called Paratome 
for both VH and VL using the modeled structure 
of ScFv anti-Ag85B (Kunik et al., 2012). These 
regions are useful to annotate the antibody on the 
docking simulation, in which specific residues are 

predicted to be responsible for antigen binding. 
 
Identification of B-cell epitope 
The main web tool, Ellipro, was used to predict 
the linear and discontinuous epitope of wildtype 
and mutant Ag85B based on 3D protein structure 
(Baloi, 2016). VaxiJen v.2 server and IEDB B-cell 
epitope prediction tools were employed in this 
study to confirm the immunogenicity of the 
predicted epitopes. The final score from the 
IEDB B-cell epitope prediction tool was 
determined by the average of score accumulation 
of Emini surface accessibility, Karplus–Schulz 
flexibility, Kolaskar–Tongaonkar antigenicity, and 
Parker hydrophilicity for each window(Emini et 
al., 1985; Karplus, 1985; Kolaskar and 
Tongaonkar, 1990; Parker et al., 1986). This score, 
along with epitope probability from BepiPred-2.0 
(Jespersen et al., 2017) and the presenting score 
from VaxiJen, was taken into account to predict 
the linear B-cell epitope of the wild-type and the 
mutant Ag85B Mtb. 
 
Molecular docking simulation 
The docking simulation to evaluate the correct 
binding and orientation between the antigen and 
antibody in each epitope was carried-out by using 
HADDOCK (van Zundert et al., 2016). 
HADDOCK considers the importance of 
flexibility for which it allows conformational 
changes upon protein-protein binding. The high 
accuracy prediction is the docking model with i-
RMSD or l-RMSD below 1 Å. The one with the 
i-RMSD below 2 Å and/or l-RMSD below 5 Å is 
a medium quality prediction, while the other with 
i-RMSD below 4 Å or l-RMSD below 10 Å are 
the acceptable prediction. We submitted the 
structure of the ScFv anti-Ag85B antibody as the 
first molecule and the structure of Ag85B as the 
second molecule. In consideration of the 
simulation restraint, the antibody binding region 
(ABR) in VH and VL was defined as the active 
residues of the ScFv anti-Ag85B antibody while 
the epitopes derived from Ellipro were designated 
as the active residues of Ag85B. We let 
HADDOCK define the passive residues 
automatically in 6.5 Å distance around the active 
residues. The parameters to be considered are the 
HADDOCK score, the RMSD from the overall 
lowest energy structure that represents i-RMSD 
and/or l-RMSD, and the z-score. After having the 
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complex Ag-Ab, we calculated the hydrogen bond 
energy between the two molecules as well as listed 
the residues of Ag85B, making H-bond using 
YASARA Structure (Krieger and Vriend, 2014). 
 
 

RESULTS AND DISCUSSION 
 
 
The wildtype and the mutant Ag85B of 
Mycobacterium tuberculosis have 325 amino acids. 
The difference between the two is that the mutant 
undergoes amino acid substitution of D218N and 
E270K in which the negatively charged aspartic 
acid 218 is replaced by asparagine and the 
negatively charged glutamic acid 270 is replaced 
by a positively charged lysine (Figure 1). The 
substitution into oppositely charged amino acids 
usually produces relatively major changes in the 
overall structure and function, especially, if the 
amino acid has a big size such as glutamic acid and 
lysine. Knowledge of such changes having 
implications for the binding of ScFv anti-Ag85B, 
as well as the resulting epitopes, is one of the 
objectives, that we want to highlight. 

We built the 3D structure, using I-TASSER, 
that showed a slight difference between the two 
sequences as well as between the modeled 
structure and the template or reference structure 
represented by the root mean square deviation 
(RMSD) (Figure 2). The backbone RMSDs 
between the modeled structure and the reference 

structure are lower than 2 Å, indicating that they 
have minor differences. The reference structure 
with PDB code 1F0N is a mature form of 
mycolyl-transferase Ag85B that does not have the 
signal peptide (residue 1-41) while the models are 
the full-length structure. The effect of threading 
using I-TASSER gave a relatively different result 
for the first 41 residues between the wildtype and 
the mutant, while the differences for the further 
residues are not substantial. The quality of the 
structure used in this study can be seen in the 
Ramachandran plot in Figure 3.  

The structure assessment using MolProbity 
(Chen et al., 2010) showed an excellent structural 
quality that the three structures have 
Ramachandran favored> 90% and MolProbity 
score < 2.0. A general structural quality requires 
chains to have a MolProbity score below 2.0. 
Therefore, all the modeled structures are eligible 
to be used for B-cell epitope mapping and 
biomolecular docking. Using the structure of 
ScFv anti-Ag85B, Paratome has identified the 
antigen-binding regions (ABRs): 
134FTFDDFAMH142, 159TWNSGTIAY167, 
and 205RGHYGLDV211 for the heavy chain; 
25YSNIGTNYVY34, 46LVIQKNTQRPS56, 
and 91WDDSLS96 for the light chain. All these 
regions are predicted to have direct interaction 
with Ag85B. ABR is calculated based on the 
virtually antigen-binding residues that fall within 
regions of structural consensus. 

 

 
Figure 1. The aligned residues between Ag85B wildtype (P9WQP1) and Ag85B mutant (Q847N4). 
Mutations occurred in residue D218N and residue E270K. 
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Figure 2. The aligned objects between the 
modeled Ag85B wildtype (yellow) and the 
reference structure with PDB ID 1F0N (blue) 
have an RMSD of 0.506 Å over 282 aligned 
residues with 100.00% sequence identity. The 
modeled Ag85B mutant (orange) and the 
reference structure 1F0N (blue) has an RMSD of 
0.466 Å over 282 aligned residues with 99.29% 
sequence identity.

 

Figure 3. The Ramachandran plot of the modeled structures. (A) Ag85B wildtype with 90.4% of all 
residues was in favored regions, and 99.1% of all residues were in allowed regions. (B) Ag85B mutant with 
91.0% of all residues were in favored regions and 98.5% of all residues were in allowed regions. (C) ScFv 
anti-Ag85B antibody 98.2% of all residues were in favored regions and 100.0% of all residues were in 
allowed regions. 
 
The epitope prediction using Ellipro produced 
nine linear epitopes of Ag85B wildtype and ten 
linear epitopes of Ag85B mutant with the minimal 
six residues in each epitope (Table 1). Ellipro also 
predicted three conformational epitopes for both 
types of Ag85B (Table 2). Each of the epitopes 
has a protrusion index (PI) of more than 0.5. The 
protrusion index indicates the percentage of the 
molecular bulk where the atoms of the epitopes 
are protruding outside the region (Lata et al., 
2018). The higher the protrusion index, the higher 
the probability of the peptide to be found in 
experimentally determined continuous epitopes. 
The wildtype Ag85B and the mutant Ag85B did 
not show a major difference in terms of the 
predicted epitopes by Ellipro. The mutant Ag85B 
has one added epitope, 52QVPSPSMGRD61, 

which does not appear in Ag85B wildtype. The 
wildtype Ag85B and the mutant Ag85B only have 
one corresponding conformational epitopes, 
although the residues incorporated in all the 
conformational epitopes are almost identical. The 
highest protrusion index is 0.811 in Ag85B 
wildtype and 0.818 in Ag85B mutant for linear 
epitope 251CGNGTPNELGGANIPAEF268. 
For the conformational epitope, the highest 
protrusion index is 0.713 in wildtype Ag85B and 
0.708 in mutant Ag85B. The average protrusion 
index for all the predicted epitopes by Ellipro was 
also calculated that Ag85B wildtype has an 
average PI score of 0.677, while the Ag85B 
mutant has an average PI score of 0.669. This data 
indicates that the differences between Ag85B 
wildtype and Ag85B mutant are not substantial in 
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the case of linear epitope position based on their 
3D structure. 

For further analysis, the antigenicity for each 
resulting linear epitope from Ellipro was 
calculated using VaxiJen 2.0 and IEDB linear 
epitope prediction tools. The VaxiJen threshold 
was set to 0.5 that the epitopes scored above the 
threshold were predicted to be antigenic 
(Doytchinova and Flower, 2007). Three epitopes 
in both Ag85B showed VaxiJen score below the 
threshold and predicted to be nonantigenic. 

Those three epitopes consist of the first 61 
residues for the wildtype and the first 49 residues 
for the mutant, 296FPPNGTH302, and 
99EWYYQSG105. For the reason that the first 
41 residues are a signal peptide which undergoes 
cleavage in the mature form or after Ag85B is 
secreted, it was eliminated from epitope 
prediction. Moreover, VaxiJen and IEDB linear 
epitope prediction tools calculated that the 
predicted epitope containing this peptide has a 
low score, thus predicted to be nonantigenic.

 
Table 1. Predicted linear B-cell epitopes of Ag85B Mycobacterium tuberculosis. 

 
(*)Residues in bold are part of the predicted linear B-cell epitopes. 
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Table 2. Predicted conformational B-cell epitopes of Ag85B Mycobacterium tuberculosis. 

(*)Residues in bold are part of the predicted linear B-cell epitopes. 
(**)Residues in bold are part of the predicted conformational B-cell epitopes. 
 

The next antigenicity calculation was carried out 
using IEDB linear epitope prediction (Emini 
surface accessibility prediction, Karplus–Schulz 
flexibility prediction, Kolaskar–Tongaonkar 
antigenicity, and Parker hydrophilicity prediction). 
The single score to predict a peptide antigenicity 
comes from the average of the score from the 
four methods. A higher score increases the 
probability of the protein to be antigenic. Again, 
the predicted epitope containing signal peptide 
has the lowest score, whereas the predicted 
epitope 68SGGNNS73 is calculated to be the 
most antigenic, which corresponds with the 
VaxiJen result. Most of the result from IEDB B-
cell linear epitope prediction corresponds with the 
result from VaxiJen, except for 
296FPPNGTH302, which showed the opposite. 
Hence, it will be ambiguous to include this 
peptide as the predicted linear epitope because it 
has a low VaxiJen score. The average scores were 
calculated from both antigenicity prediction tools 
to discern the antigenicity difference between 
Ag85B wildtype and mutant. The average score of 
antigenicity denotes almost the same result 
between Ag85B wildtype (1.08 for VaxiJen and 

1.35 for IEDB linear epitope prediction) and 
Ag85B mutant (1.07 for VaxiJen and 1.29 for 
IEDB linear epitope prediction). The similarity 
between the two is also exhibited on the similar 
pattern of antigenic propensity. 

The predicted conformational epitope data 
from Ellipro was used to resolve the ambiguity of 
whether 296FPPNGTH302 is one of the 
predicted linear epitopes or not. It is found that 
296FPPNGTH302 is listed on the top list of 
predicted conformational epitopes with a 
protrusion index 0.713 for Ag85B wildtype and 
0.708 for Ag85B mutant. Considering this data, 
296FPPNGTH302 is included as one of the 
predicted linear epitopes. In contrast to 
99EWYYQSG105, it has a low score of 
protrusion index (calculated by Ellipro) and 
antigenic propensity (calculated by VaxiJen and 
IEDB B-cell linear epitope prediction tools). 
However, some residues of the peptide are listed 
on the predicted conformational epitope with 
protrusion index 0.669 for Ag85B wildtype and 
0.662 for the Ag85B mutant. Having these 
average scores, 99EWYYQSG105 is delisted on 
the predicted linear epitope. The predicted 
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conformational epitope data were used to confirm 
whether the predicted linear epitopes become part 
of them. Both data were found to be closely 
related to each other, showing the appearance of 
most of the predicted linear epitopes on the 
predicted conformational epitopes. On the 
contrary, five out of seven (in Ag85B wildtype) 
and five out of eight (in Ag85B mutant) linear 
epitopes predicted by Bepipred 2.0 were observed 
in the linear and conformational epitopes 
predicted by Ellipro. This data reaffirms the 
antigenicity of some epitopes predicted by 
Ellipro. 

The docking simulation was carried out in 
order to analyze the binding interaction between 
antigen and antibody. The value of i-RMSD or l-
RMSD is equal to the value of HADDOCK 
RMSD from the overall lowest-energy structure. 
The brief results of the docking simulation are 
shown in Table 1 and Table 2. The docking 
simulation between Ag85B and ScFv anti-Ag85B 
using HADDOCK possess high accuracy with 

RMSD below 1 Å for 17 out of the 25 complexes. 
Six complexes have the medium quality prediction 
(RMSD < 5 Å), and two complexes have 
acceptable prediction (RMSD < 10 Å). These 
imply HADDOCK capability to find the correct 
position between Ag85B epitopes and the ABR of 
the ScFv anti-Ag85B antibody. The other 
parameter in the docking is the Z-score, which 
showed the number of standard deviations from 
the average of the scores that the cluster is located 
(Chen et al., 2010). The more negative the Z-score, 
the better the cluster. Most of the result has 
negative Z-score of which the best clusters were 
successfully produced. The HADDOCK scoring 
function is a linear combination of van der Waals 
intermolecular energy, electrostatic intermolecular 
energy, desolvation energy, restraint violation 
energy, and buried surface area (Vangone et al., 
2017). HADDOCK cannot estimate the binding 
affinity of a complex but we used it to determine 
the possibility of the binding interaction between 
antigen in its epitope and antibody in its ABR in 
terms of the HADDOCK scoring function 
(Payandeh et al., 2018). The lower the 
HADDOCK score, the higher the possibility of 
the pair to interact or make a complex. Most of 
the epitopes show HADDOCK score lower than 
-100.0, which indicates the high possibility of the 
molecules to interact with each other through the 

given predicted epitopes and ABR (Xue et al., 
2016; de Vries et al., 2010). Two conformational 
epitopes containing signal peptide scored higher 
than -100.0 with the worst score of 35.7 +/- 15.3 
for the second conformational epitope of the 
Ag85B mutant. The positive score indicates that 
the ScFv anti-Ag85B antibody has relatively lousy 
contact to the given conformational epitope of 
Ag85B compared to the others. The restraint 
violation energy was recorded very high for the 
second conformational epitope, > 1000.0 
kcal/mol, and > 2000.0 kcal/mol for Ag85B 
wildtype and Ag85B mutant, respectively. It 
occurred because the number of restraint residues 
calculated as active residues is relatively large, 
which makes the calculation was not satisfying. 
While the second conformational epitopes 
involve the signal peptide, and they were not 
taken into consideration.  

The hydrogen bond energy calculated by the 
YASARA structure is inversely correlated to the 
HADDOCK score. The lower the HADDOCK 
score, the higher the H-bond energy. The higher 
the H-bond energy, the stronger the antigen binds 
to the antibody. One thing to note is that the 
docking result does not correspond to the 
protrusion index or antigenicity data. The docking 
only supports to give further annotation about the 
complex of antigen and antibody in a given 
predicted epitope and ABR, which then assists in 
predicting the correct conclusion in epitope 
mapping. We accordingly cannot eliminate 
68SGGNNS73 in Ag85B wildtype from its 
possibility to be a predicted linear epitope for the 
reason that its HADDOCK score is lower than 
the others. 68SGGNNS73 in the Ag85B mutant 
has a higher HADDOCK score as well as its H-
bond energy. 

Moreover, the H-bond involves many 
residues of 68SGGNNS73 in Ag85B mutants 
such as S68, G69, N71, and N72. Only 
68SGGNNS73 in Ag85B mutant (other than 
predicted epitopes containing signal peptide) was 
recorded to have the signal peptide making H-
bond with the antibody while 68SGGNNS73 in 
Ag85B wildtype does not involve the signal 
peptide. In consequence, 68SGGNNS73 in 
Ag85B wildtype produced lower H-bond energy 
and a higher HADDOCK score. The main 
difference between 68SGGNNS73 data in Ag85B 
wildtype and Ag85B mutant is that they came 



AsPac J. Mol. Biol. Biotechnol. Vol. 28 (1), 2020   In silico analysis for prediction of B-cell epitope 108 

from different types of clusters. Therefore, the 
HADDOCK score, H-bond energy, and the 
residues involved in the H-bond are also different. 
The same thing applies to the other linear 
epitopes, e.g., 278LKFQDAYNAAGGHN291, 
251CGNGTPNELGGANIPAEF268, 
209GDAGGYKAADMWGPSSDPAWE229, 
etc. This variability of the docking result is also 
the reason to separate it from antigenicity data. In 

our analysis, most of the residues that make H-
bond are probably important, especially if they are 
part of the linear and conformational epitopes. All 
the B-cell epitope candidates of Ag85B 
Mycobacterium tuberculosis are shown in Table 3. 
Overall, we can conclude that the differences 
between Ag85B wildtype and Ag85B mutant in 
terms of the predicted B-cell epitopes are not 
substantial.  

 

Table 3. The candidates of the B-cell epitopes in Ag85B Mycobacterium tuberculosis. 

 
 

CONCLUSION 
 

 

The B-cell epitope prediction of Ag85B 
Mycobacterium tuberculosis has been conducted 
using immunoinformatic tools. Further 
assessment of the antigenicity and the docking 
showed corresponding results to support the B-
cell epitope prediction. The screening of both 
linear and conformational B-cell epitopes using 
criteria-based analysis resulted in the eight linear 
epitopes and two conformational epitopes in 
Ag85B with high antigenicity. There are no major 
differences between Ag85B wildtype and Ag85B 
mutant, which make this antigen the right 
candidate for the TB vaccine target. However, 
this biomarker cannot be used as the target to 
differentiate wildtype and mutant TB in a 
detection system by using a rapid test platform 
that employs a specific antibody against the 
antigen. 
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