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Abstract  To derive System Identification and Control of dynamic MIMO UAV nonlinear system, based on the collection 

of input-output data during sampled from a test flights, using artificial neural network is more convenient compared to 

physics and mathematics methods. The data is used as both training and testing set for artificial neural networks. There were 

36250 input-output sampled flight data and grouped into two flight data sets. The first flight data set, a chirp signal, are used 

for training the neural network to determine parameters (weights) for the network, using all sample flight which are not 

belong to the second data set. Validation of the network is performed using the second data set, which were not used for 

training, which are representation of UAV circular flight movement. After an artificial neural network was trained using the 

training data set, the network is excited by the second set input data set. To make data, in particular the position, free from 

noise/glitch, the Kalman Filter is used before the position is further processed. The novelty lies on using difference instead of 

the absolute position only to predict/calculate next position. The outputs (position, roll, pitch and yaw), on the next period, 

produced by real UAV system were similar to the predicted outputs produced by Neural Network model. Furthermore 

adaptive direct inverse control is used to control the UAV follows a predetermined reference position. 
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1. Introduction 

To accurately control a system, it is beneficial to first 

develop a model of the system. The main objective for the 

modeling task is to obtain a good and reliable tool for 

analysis and control system development. A good model 

can be used in off-line controller design and implementation 

of new advanced control schemes. In some applications, 

such as in Unmaned Aerial Vehicle (UAV), it is very safe 

and advantageous to tune controllers off-line before 

implemented directly on the plant. In such cases, an 

accurate model must be used off-line for the tuning and 

verification of the controller. While nearly all aspects of 

modeling and simulation in control systems have now 

reached a reasonable stage of development, the aspect 

which remains least satisfactory at the present time is that of 

representing the loads supplied from systems due to the 

very wide range of load types. 

Most motion control systems driven by motors exhibit 

nonlinear behavior and are often difficult or unrealistic to 

model directly using laws of physics. The presence  
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disturbance such as wind in any direction, is the main 

nonlinear element in motion control systems. In general, a 

linear system allows the use of more sophisticated advanced 

control schemes to achieve higher performance. However, 

various other nonlinear elements exist in UAV system. The 

voltage source pulse width modulation (PWM) amplifier is 

used and dead time is required to prevent the shoot-through 

phenomenon during switching, which results in a nonlinear 

effect to the system. In an extreme case, the distorted output 

voltage produces torque pulsation and instability at 

low-speed. Hur et al. [1] proposed a 2 degree-of freedom (2 

DOF) controller employing an inverse current dynamic 

model and a PI controller to compensate the effects of the 

dead time for induction motor control. The 2 DOF 

controllers have also been extensively studied in the area of 

motion control to suppress disturbances [1].  

In this paper, we propose a method to obtain an accurate 

nonlinear system model to identify UAV system based on 

neural networks (NNs). Modeling techniques based on NNs 

have proven to be quite useful for building good quality 

models from measured data. If such an NN model is 

available, various control synthesis approaches may be 

attempted, even if the controllers themselves are not 

implemented in neural networks. It is possible to use a 

number of conventional nonlinear design techniques such as 

feedback linearization, generalized predictive control, or 
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model linearization followed by a linear design. Another 

approach is to use a neural network as the controller; e.g., 

direct inverse control or internal model control [6-9]. 

A model must be found that combines both robustness 

and accuracy to the desired extent. As well, the model 

should be computationally efficient and economical in order 

to be applied in mass-produced systems. To succeed in 

fulfilling these criteria, we apply a Neural Network 

controller to compensate the effects of disturbance without 

degrading tracking performance for a real-life system 

modeled in a NN.  

For the experimental system we consider UAV-Alap-alap 

system. It requires high speed, robustness and accuracy. It is 

equipped with servo motors to control the positions of left 

elevon, right elevon and throtle. The servo motors are 

widely used as an actuator since it has a high 

torque-to-weight ratio, are easy to control, and has high 

efficiency and negligible maintenance requirements. To 

name a few, torque ripples and shifting of central of gravity 

during the flight are, however, two of the disadvantages of 

the servo motor and may be considered as a nonlinearity. In 

the present work, we model an UAV system, which has 

servo motors, using NNs and then proceed to develop 

suitable controller synthesis techniques for such a system.  

The next step after modeling the UAV Alap-alap is to 

design control system for the UAV based on adaptive direct 

inverse control. 

Apart from this introductory section, the article is 

organized as follows: Section 2 describes the setup used for 

data acquisition in our experiments. The system 

identification procedure for the sewing machine is detailed 

in Section 3, where controller synthesis methodology and 

experimental results are also presented. Concluding remarks 

are given in Section 4. 

2. Data Aquisition 

Data aquisition is done by UAV Flight Management 

System, Picollo both on board and on the ground. 

2.1. Hardware Configuration 

 

Figure 1.  Data aquisition preparation of AUV-Alap-alap 

To collect input and output data, an inverted-V-tail twin 

boom UAV made by BPPT is used. This UAV, shown in Fig. 

1, is called Alap-alap has 3.51 meter of wingspan, max 18kg 

of take-off weight and cruise speed of 55Knot. 

Input and output data such as time, longitude, latitude, 

altitude, North-velocity, East-velocity, Down-velocity, roll, 

pitch, yaw, angles speed, aileron, left ruddervator, right 

ruddervator, throttle, are collected during a test flight by a 

UAV Flight Management System, Picollo, made by Cloud 

Cap Technology.  

2.2. Data Collections 

Collections of input and output data were recorded from a 

flight test of the UAV. During the flight test, UAV Alap-alap 

was flown from the ground 40 meter above sea level, to the 

maximum height 436.5 meter above the sea level, and landed 

back after 36250 sampling of inputs and outputs. Fig. 2 

shows Longitude-Latitude of the UAV during data 

acquisition. Fig.3 shows UAV Longitude-Height during data 

acquisition. 

 

Figure 2.  UAV-Alapalap track in longitude-latitude during flight test 
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Figure 3.  UAV-Alapalap track in longitude-height during flight test 

 

Figure 4.  A Three layer neural network 

 

Figure 5.  A block diagram representation of a three layer neural network 

Two sets of data were assigned from the available data. 

Flight data from a circular form flight, given by red line in 

Fig. 1 and Fig. 2, is assigned as test data and the rest is 

assigned as training data. 

3. System Identification 

The objective is to carry out system identification of the 

UAV system by using neural networks. Three inputs (u), 

consist of left elevon, right elevon and throtle are applied to 

the UAV system while the output (y) are roll, pitch and yaw. 

Six states variables Ax, Ay, Az, P, Q adn R are also recorded 

during a flight test. Two sets of data flights were derived 

from 36250 sample flight test data. For the first data flight set, 

a chirp signal, are used for training the neural network to 

determine parameters (weights) for the network, using all 

sample flight which are not belong to the second data set. 

Validation is performed using the second data set, which 

were not used for training, representation if UAV circular 

flight movement. We shall refer to the second data set as the 

test data. It is important to use the test data for validation to 

ensure that our neural network model does replicate the 

UAV system in general rather than memorize a specific data 

set. 

3.1. Back Propagation 

This part will describe back propagation method to 

deter-mine/tune the wiegths/parameters in a neural network 

which determine the output. A typical multilayer network 

with an input layer, an output layer, and two hidden layers is 

shown in Fig. 4. For convenience we denote this in block 

diagram form as shown in Fig. 5 with three weight matrices 

𝑊1 , 𝑊2 , and 𝑊3  and a diagonal nonlinear operator   

with identical sigmoidal elements 𝛾 𝑖. 𝑒. , 𝛾 𝑥 = (1 −
𝑒−𝑥)/(1 + 𝑒−𝑥) following each of the weight matrices. 

Each layer of the network can then be represented by the 

operator 𝑁𝑖 𝑢 = Γ 𝑊𝑘𝑢  and the input-output mapping of 

the multilayer network can be represented by 𝑦 = 𝑁 𝑢 =
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Γ  𝑊3Γ 𝑊2Γ 𝑊1   . 

In practice, multilayer networks have been used 

successful-ly in pattern recognition problems [2-5]. The 

weights of the network 𝑊1, 𝑊2, and 𝑊3 are adjusted to 

minimize a suitable function of the error e between the 

output y of the network and a desired output yd. This results 

in the mapping function 𝑁 𝑢  realized by the network, 

mapping vectors into corresponding output classes. 

Generally a discontinuous mapping such as a nearest 

neighbor rule is used at the last stage to map the input sets 

into points in the range space corresponding to output classes. 

From a systems theoretic point of view, multilayer networks 

can be considered as versatile non-linear maps with the 

elements of the weight matrices as parameters. In the 

following sections we shall use the terms "weights" and 

"parameters" interchangeably. Detail of weights adjustment 

can be seen on [10]. 

3.2. System Identification Using a Neural Network 

In the identification framework, we assume that the UAV 

model can be represented in discrete input-output form by 

the identification structure: 

𝑦  𝑘 = 𝑔 [𝑦 𝑘 − 1 , … , 𝑦 𝑘 − 𝑛𝑎 , 𝑦 𝑘 − 1 , 

𝑢 𝑘 − 𝑛𝑘 , … , 𝑢 𝑘 − 𝑛𝑏 − 𝑛𝑘 + 1  ]    (1) 

where  kŷ  is the one-step ahead prediction of the output; 

and na, nb, nk are system order and delay, respectively. This 

is essentially a one-step ahead prediction structure in which 

we use past inputs and outputs to predict the current output. 

Output network at moment k is determined by input at 

moment k and several periods before k, and also by output 

several periods before k. 

Using our intuition concerning the input-output model for 

the UAV system, a third order system is selected for the 

identification structure. Therefore, na = nb = 3 and nk = 1 in 

the structure above. We use the neural network  .ĝ  to model 

[.]. The [ ] contains the regressor structure, which is 

implemented as Tapped Delay Lines (TDLs) in code. 

Therefore, the regressor structure for this network is given 

by: 

𝜙 𝑘 = [𝑦  𝑘 − 1 , … , 𝑦  𝑘 − 𝑛𝑎 , 

𝑢 𝑘 − 𝑛𝑘 , … , 𝑢 𝑘 − 𝑛𝑏 − 𝑛𝑘 + 1 ]    (2) 

where 𝑦  𝑘  are delayed versions of the predicted outputs 

and 𝑢 .   are delayed inputs to the system. At every instant, 

the predicted output is parameterized in terms of network 

weights Θ by: 

𝑦 𝑘, Θ = 𝑔 𝜙 𝑘 , Θ         (3) 

and is depicted in Fig.6. 

  

Figure 6.  The architecture for the 𝑔 [⋅] network 

Third order of dynamic system is considered adequate to 

represent most of real system. Learning process to set 

parameters in neural network model to produces predicted 

output, yp(k), is given in Figure 7. 

 

Figure 7.  Neural-network learning process 

Where: 

u(k): Three inputs, LeftAileron(k), LeftRuddervator(k), 

RightRuddervator (k), 

yd (k): Five real outputs, Rolld (k), Pitchd (k) , 

Longituded (k), Latituded(k) and Altituded (k) 

yp (k): Five predicted outputs, Roll p (k), Pitch p (k) , 

Longtude p (k), Latitude p (k) and Altitude p (k) 

D(3): Three period Tapped Delay Line/TDL 

It will be shown later that by doing this way, the position 

will be calculated with bad accuracy. Po-sition will be better 

calculated if neural network uses position difference in one 

period instead of absolute position. If the position difference 

is de-fined as: 

 

ˆ ˆ ˆ( 1) ( 1) ( )y k y k y k     ; ˆ ˆ ˆ( 1) ( 1) ( )u k u k u k                          (4) 

 ˆ ˆ( ) ( 1),..., ( 1),..., ( ),..., ( 1)k k k a by k n g y k n y k n n u k u k n                      (5) 

Then the neural network structure uses the position difference in one periode can be given in Fig. 8. 
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Figure 8.  Neural network structure using one periode position difference 

3.3. Direct Inverse Control 

In direct inverse control (DIC), currennt inputs are calculated given the outputs and inputs in other periods, according to eq. 

(6).  

   1ˆ ˆ ( ), ( 1),..., ( ), ( 1), ( 1),..., ( 1)k k bu k g y k n y k n y k y k d na u k u k n                    (6) 

Also Eq.(7) can be used. 

   1ˆ ˆ ( ), ( ), ( 1),..., ( 1),..., ( )k bu k g y k n y k y k na u k u k n                     (7) 

The whole system, both identification and control is depicted in Fig.9. 

 

Figure 9.  Identification and Control of UAV Alap-alap  

3.4. The Results 

After learning to determine Neural Network parameters, 

as depicted in the Fig. 9., the second set of input were fed in 

to the network to get the first predicted output, yp(k) (roll, 

given by red line) and can be compared to the desired/real 

roll(given by blue line), yd(k). 
As seen from the Fig 9., the neural network approximate 

the desired output( roll) quite accurately. The difference 

between the first desired output, yd(k), and predicted output, 

yp(k), is shown by the Figure 10. 

The second output (pitch) is shown in the figure 11., where 

desired output, yd(k), is drawn in blue line, and predicted 

output, yp(k), is drawn in red line. 

As seen from the Figure 11., the neural network 

approximate the desired output (pich) quite accurately. The 

difference between the second desired output, yd(k), and 

predicted output, yp(k), is shown by the Figure 12. 

The third output (yaw) is shown in the Figure 13., where 

desired output, yd(k), is drawn in blue line, and predicted 

output, yp(k), is drawn in red line. 

As seen from the Figure 14., the neural network 
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approximate the desired output (yaw) quite accurately. The 

difference between the third desired output, yd(k), and 

predicted output, yp(k). 

The real positon of the UAV is calculated aproximately by 

neural network which uses position difference in calculation 

is shown in Figure 15. 

The real positon of the UAV is calculated with less 

precision by neural network which uses absolute position in 

calculation is shown in Fig. 16. 

 

Figure 9.  Comparison of predicted and desired roll 

 

Figure 10.  The difference/Error between predicted and desired roll 

 

Figure 11.  Comparison of predicted and desired pitch 
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Figure 12.  The difference/error between predicted and desired pitch 

 

Figure 13.  Comparison of predicted and desired yaw 

 

Figure 14.  The difference/error between predicted and desired yaw 

4. Conclusions 

Neural network Back Propagation was used to model and 

control UAV-Alap-alap. Using artificial neural network is 

more convenient compared to physics and mathematics 

mehods. Parameters of neural network were calculated using 

inputs and outputs data, got from a flight test, from 40 m 

above sea level to 354.4 meter above the sea level and back. 

From 36250 sampling data, two sets of data were formed. A 

set of 3981 sample data, taken from a circular form track is 

assigned a test data and the rest is set as a training data set. 

After an Artificial Neural network was trained using the 
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training data set, the network is excited by the second set 

input data set. To make data, in particular the position, free 

from noise/glich, the Kalman Filter is used before the 

position is further processed. The desired outputs (roll, pitch 

and yaw) produced by real UAV system were identical to the 

predicted outputs produced by Neural Network model. The 

Neural Network has to be adjusted when position output is 

involved. The precision will be more accurate when the 

position differences are used in the calculation, instead of 

absolute position. 
 

 

Figure 15.  Comparison of real and calculated neural network position. Position difference are used in calcultaion 

 

Figure 16.  Comparison of real and calculated neural network position of UAV-Alap-alap. Absolute position are used in calcultaion 
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