
International Journal of Remote Sensing and Earth Sciences Vol. 18 No.1 June 2021: 103-116 

103 
http://dx.doi.org/10.30536/j.ijreses.2021.v18.a3609  @National Institute of Aeronautics and Space of Indonesia (LAPAN) 

ESTIMATION OF ABOVEGROUND CARBON STOCK USING SAR 

SENTINEL-1 IMAGERY IN SAMARINDA CITY 

 
Bayu Elwantyo Bagus Dewantoro1*, Retnadi Heru Jatmiko1 

1Department of Geographic Information Science, Faculty of Geography, Universitas Gadjah Mada, 

Yogyakarta, 55281, Indonesia 

*e-mail: bayuelwantyo@mail.ugm.ac.id 

Received: 2 May 2021; Revised: 8 July 2021; Approved: 13 August 2021 

 
 
 

Abstract. Estimation of aboveground carbon stock on stands vegetation, especially in green open space, 

has become an urgent issue in the effort to calculate, monitor, manage, and evaluate carbon stocks, 

especially in a massive urban area such as Samarinda City, Kalimantan Timur Province, Indonesia. The 

use of Sentinel-1 imagery was maximised to accommodate the weaknesses in its optical imagery, and 

combined with its ability to produce cloud-free imagery and minimal atmospheric influence. The study 

aims to test the accuracy of the estimated model of above-ground carbon stocks, to ascertain the total 

carbon stock, and to map the spatial distribution of carbon stocks on stands vegetation in Samarinda 

City. The methods used included empirical modelling of carbon stocks and statistical analysis comparing 

backscatter values and actual carbon stocks in the field using VV and VH polarisation. Model accuracy 

tests were performed using the standard error of estimate in independent accuracy test samples. The 

results show that Samarinda Utara subdistrict had the highest carbon stock of 3,765,255.9 tons in the 

VH exponential model. Total carbon stocks in the exponential VH models were 6,489,478.1 tons, with 

the highest maximum accuracy of 87.6 %, and an estimated error of 0.57 tons/pixel. 

 

Keywords: carbon stock estimation, statistical analysis, remote sensing, Sentinel-1 imagery, Samarinda 

City. 

 

1 INTRODUCTION 

Stands vegetation in a city 

contributes greatly to the suppression of 

adverse impacts of urban activity, and to 

improved environmental quality and 

health in urban areas, including 

improved air quality, energy conservation, 

lower air temperatures, and ultraviolet 

radiation (Tavasoli, N., Arefi, H., Samiei-

Esfahany, S., & Ronoud, Q., 2019). 

Stands vegetation in green open space 

also acts as a natural carbon sink in 

urban areas, which is very beneficial for 

climate change mitigation because of its 

ability to absorb carbon dioxide (CO2) 

from the atmosphere (Godwin et al., 2015; 

Poudyal et al., 2011; Strohbach & Haase, 

2012). This makes the provision, 

monitoring, and evaluation of biomass 

content and carbon stocks capable of 

playing a role in the absorption of 

inorganic carbon in urban areas in stands 

vegetation a serious concern (Jo, 2002, in 

Wang & Gao, 2020).  

The measurement of aboveground 

biomass (AGB) and carbon stocks has 

been made by many researchers with a 

variety of methods, such as direct 

measurements in the field of the 

characteristics of biological vegetation 

structures (Fonseca et al., 2012 in Van 

Pham et al., 2019) or destructive 

measurements of vegetation samples 

capable of extracting important features 

in the calculation of AGB (Chave et al., 

2014). Quantitative approaches have 

included canopy models and vegetation 

types (Krooks et al., 2014) and allometric 

equations using remote sensing 

techniques integrated with data 
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measurement in the field employing 

regression analysis (Ostadhashemi et al., 

2014; Stickler et al., 2009; Van Pham et 

al., 2019; Vargas-Larreta et al., 2017).  

Remote sensing capabilities in 

estimating AGB and carbon stocks have 

been an area of interest in recent decades 

for several reasons, including their ability 

to extrapolate to vegetation parameters 

such as canopies, layer structures, 

leaves, and even forest floors; their wide 

area coverage, which increases their 

effectiveness and efficiency in AGB 

estimates and carbon stocks (Laurin et 

al., 2018); as well as the fact that remote 

sensing is also very helpful in mapping 

areas that have very limited access, with 

the support of spatial and temporal 

aspects (Lu, 2006).  

Several methods of estimating AGB 

and carbon stocks using remote sensing 

have been developed based on passive 

and active sensors (Laurin et al., 2018). 

Passive sensor utilisation has some 

limitations, such as it can only be utilised 

during the day, and is limited by cloud 

cover, smoke and/or aerosols, 

atmospheric influence, and limitations in 

the extraction of vegetation structure 

information (Berninger et al., 2018).  

This makes active sensors a 

potential alternative as they can solve the 

limitations that passive sensors have in 

estimating AGB and carbon stocks. One 

of the remote sensing technologies with 

active sensors that has been widely used 

for AGB estimation and carbon stocks is 

synthetic aperture radar (SAR), in this 

case Sentinel-1 imagery. 

SAR is able to operate under a 

variety of weather conditions, can 

function during the day and night, has 

the ability for volumetric measurement 

(Berger et al., 2019; Santi et al., 2017).  

Samarinda City is one of the major 

cities on Kalimantan Island, but the 

availability of stands vegetation in green 

open space in the city is still below the 

minimum area standard according to UU 

No. 26 of 2007 tentang Penataan Ruang 

(Law No. 26 of 2007 on Spatial Planning 

(Effendi, 2019). This makes inventories, 

monitoring, and evaluation related to 

such vegetation, along with derivative 

information produced from green open 

space, an important issue to deal with, 

including that of carbon stock.  

The extensive cloud cover 

conditions in Samarinda City make 

optical imagery from passive system 

remote sensing recording relatively 

difficult to use in estimating carbon 

stocks, so active remote sensing, in this 

case Sentinel-1, which produces SAR 

imagery, can be used to solve the 

problem. 

 

2 MATERIALS AND METHODOLOGY 

2.1 Location and Data 

The research site was located in 

Samarinda City, with coordinates 

117°03'00" E – 117°18'14" E and 

00°19'02" S – 00°42'34" S. The city was 

chosen as the research site because it has 

extensive cloud cover that occurs 

throughout the year, so SAR is expected 

to make an important contribution to this 

research. In addition, the geographical 

location of Samarinda City is relatively 

close to the prospective capital of the 

Republic of Indonesia located in Penajam 

Paser Utara Regency. 

This has the potential to make 

physical development in Samarinda City 

more significant, which could affect the 

existence of stands vegetation in green 

open space. 
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Figure 2-1: Map of Research Site 

 

The data used to support the study 

included Sentinel-1A IW GRD image 

recording from January 15th 2021; 

Sentinel-2A L2A image recording from 

throughout 2020; an RBI digital map of 

Samarinda City, scale 1:50,000; and 

ALOS PALSAR Digital Elevation Model 

12.5 m. 

 

2.2 Data Preprocessing 

Pre-processing of the Sentinel-1A 

SAR imagery included radiometric 

calibration; terrain correction using 

ALOS PALSAR DEM 12.5 m, including 

radiometric terrain flattening and 

radiometric terrain correction; and 

speckle filtering. Sentinel-1A IW GRD is a 

SAR imagery that has been projected 

against the Earth's ellipsoid model, but 

needs to be enforced/orthorectified in the 

terrain correction process because the 

geometry position is inverted horizontally 

(Amriyah et al., 2019).  

Sentinel-2A L2A is an imagery that 

has been radiometrically corrected to 

surface reflectance or bottom-of-

atmosphere reflectance and has been 

geometrically corrected. The pre-

processing was performed by displaying 

road network vector data from the RBI 

map on the image for geometry position 

checking and histogram display to 

observe the distribution of reflectance 

image values, as well as by performing 

cloud masking throughout 2020 utilising 

Google Earth Engine (GEE). The 

utilisation of GEE in the cloud masking 

was intended to reduce compute loads 

and improve data processing efficiency 

due to the large number of image scenes. 

 

2.3 Supervised Classification of Land 

Cover Extraction 

Land cover extraction was 

performed to obtain the appearance of 

stands vegetation using the maximum 

likelihood algorithm. This was chosen 

based on its good performance in 

classifying land cover based on 

probability calculation or the maximum 

probability of each sample group 

(Danoedoro, 2012).  

Five land cover classes were 

mapped in the study, namely stands 

vegetation, non-stands vegetation, built-

up areas, bare land, and water bodies. 

The results of the land cover 

classification were masked to separate 

the stands vegetation class and other 

classes of land cover for further analysis.  



Bayu Elwantyo Bagus Dewantoro and  Retnadi Heru Jatmiko 

106 International Journal of Remote Sensing and Earth Sciences Vol. 18 No. 1 June 2021 

2.4 Accuracy Assessment of Land 

Cover Classification 

Land cover accuracy assessment 

was made by utilising a confusion matrix 

and kappa coefficient. The matrix was 

used to ascertain the level of reliability, or 

simply to establish the magnitude of 

errors or misclassification in the sample 

used (Sutanto, 2016). The kappa 

coefficient was used to assess the level of 

agreement from two points of view of the 

assessor in terms of classifying an object 

or data (Cohen, 1960), in this case the 

results of the land cover classification.  

Determination of the accuracy of 

the  assessment samples was made by 

utilising stratified random sampling 

techniques, in accordance with the land 

cover class. The sample used for the 

accuracy test was calculated by 

employing Slovin's formula in equation 2-

1, following Sugiyono (2016),  while the 

agreement level was measured using the 

kappa coefficient developed by Cohen 

(1960) in equation 2-2.  

 

𝑛 =  
𝑁

1 + 𝑁𝑒2
 (2-1) 

where: 

n  =  number of samples 

N        =  size of population 

e =  margin of error 

 

𝑘 =
𝑁 ∑ 𝑚𝑖,𝑖  − ∑ (𝐺𝑖𝐶𝑖)

𝑛
𝑖=1

𝑛
𝑖=1

𝑁2 − ∑ (𝐺1𝐶𝑖)
𝑛
𝑖=1

 (2-2) 

where: 

k  = Kappa coefficient 

N  = number of accuracy  

     samples 

∑ (𝑚𝑖,𝑖)𝑛
𝑖=1  = number of correct  

   samples 

∑ (𝐺𝑖𝐶𝑖)𝑛
𝑖=1  = number of lines and  

    columns multiplied per    

   land cover class 
 

2.5 Carbon Stock Estimation 

Estimation of the carbon stocks was 

made on the stands vegetation using 

allometric equations to obtain biomass 

content, and conversion formulas to 

obtain carbon stocks. The study used the 

allometric equation developed by Brown 

(1997), especially for use in humid-

climate tropical vegetation. It was chosen 

because climatic conditions in 

Samarinda City include varied rainfall, 

from 31.8 - 401.7 mm/month and with 

humidity reaching 85% (Central Bureau 

of Statistics, 2019).  

Another factor underlying the 

selection of the equation was the number 

of samples, which totalled 170 with 

varied tropical vegetation species. They 

were more in accordance with the ability 

of Sentinel-1A SAR imagery related to its 

spatial resolution which spatially finds it 

quite difficult to accommodate the 

appearance of vegetation up to the level 

of species.  

The estimation of stands vegetation 

carbon stocks was derived from 47% of 

the total content of aboveground biomass 

(Asner and Mascaro, 2014; IPCC, 2006 in 

Zaki et al., 2016). The equation used for 

the estimation of carbon stocks is 

presented as equation 2-3 :  

 

𝐴𝐺𝐶 = 𝐴𝐺𝐵 × 0,47 (2-3) 

where: 

AGC  = aboveground carbon  

     stock (tons/pixel) 

AGB  = aboveground biomass 

       (tons/pixel) 

 

2.6 Statistical Analysis 

 The study used parametric 

inferential statistical analysis in the form 

of Pearson product-moment correlation 

analysis, simple linear regression 

analysis, simple non-linear regression 

analysis consisting of polynomial and 

exponential models, r-Pearson correlation 

tests, partial T-tests, and ANOVA tests. 

The response variable (Y) used in 

the study was the field carbon stock, 

while the predictor variable (X) was the 

SAR backscatter value. Pearson product-
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moment correlation analysis using the 

Pearson equation refers to Walpole 

(1995), as presented in equation 2-4 : 

 

𝐶𝑜𝑟 =
𝑛 Ʃ𝑋𝑌 − (Ʃ𝑋)(Ʃ𝑌) 

√{𝑛Ʃ𝑋2 − (Ʃ𝑋2)} − √{𝑛Ʃ𝑌2 − (Ʃ𝑌2)}
 (2-4) 

where: 

Cor = Pearson correlation  

    coefficient (r) 

n = number of samples 

X  = backscatter value (dB) 

Y  = carbon stock value  

     (tons/pixel) 

 

 The regression analysis was 

performed using simple linear regression 

and simple non-linear regression, with 

polynomial and exponential models. 

 

2.7  Sampling Techniques and Sample  

Plot Size 

The determination of samples in the 

field was made using the stratified 

random sampling technique, based on 

the distribution of backscatter values 

divided into five classes, but the 

implementation in the field encountered 

various obstacles.  

These included difficult access to 

the sample location, especially in the 

north and south of Samarinda City, due 

to the terrain in the form of hilly to 

mountainous forests. In addition, the 

distance between the samples was quite 

far, thus reducing the efficiency of the 

field work, and limiting the facilities and 

infrastructure supporting the field. There 

were also limitations related to human 

resources, climatic factors, especially 

high rainfall that hindered the sampling 

process, and the policy of the 

Enforcement of Restrictions on 

Community Activities in the 

administrative area of East Kalimantan 

Province, especially in Samarinda City. 

Based on these constraints, the 

sampling technique was changed to 

purposive sampling, with the aim of 

accommodating the obstacles faced, and 

prioritising safety and security factors, 

both physical and social. Attention was 

also paid to the effectiveness and 

efficiency of the field work and to the 

spatial distribution of the samples taken. 

This allowed the collection of samples in 

the field to meet the planned targets. 

The sample plot size was created 

with reference to McCoy (2005, in 

Pratama, 2019), assuming the potential 

for geometric position shifting of the 

image represented by a root mean square 

error (RMSE) value of 0.5 pixels from the 

starting position. This was done in 

anticipation of geometric position shifts; 

the measured field samples were still 

included in the image pixel size. The 

equation used for the sample plot size is 

presented as equation 2-5 : 

 
𝐴 = 𝑃 (1 + 2𝐿) (2-5) 

where: 

A  = sample plot size in the field (m2) 

P  = spatial resolution (m) 

L    = root mean square error (RMSE) 

 

2.8 Accuracy Assessment of the 

Carbon Stock Estimation Model 

The method used to test the 

accuracy of the model was standard error 

of estimate (SEE). This determined the 

number of estimated errors generated on 

each sample by comparing the estimated 

results and field data in the accuracy test 

sample. The formula used is shown as 

equation 2-6 (Margaretha, 2013, in 

Pratama, 2019). 

𝑆𝐸 = √
Ʃ(𝑦 − 𝑦′)2

𝑛 − 2
 (2-6) 

where: 

SE  = standard error of  

 estimate  (tons/pixel) 

Ʃ(y-y’)2 = total difference between values 

of carbon stock in the accuracy 

sample and field values 

n  = number of accuracy samples 
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3 RESULTS AND DISCUSSION 

3.1 Land Cover Classification  

The classification of land cover was 

made using Sentinel-2A imagery that was  

filtered using a cloud masking algorithm. 

This is because Samarinda City has 

extensive cloud cover throughout the 

year, so cloud masking algorithms are 

needed to clean up, or at least suppress 

the dominance of cloud appearance on 

images. Based on Figure 3-1, the 

distribution of the visually built-up area 

is seen to be clustered in the central part 

of Samarinda City. Bare land is quite 

spread out in the southern part of the 

city, with a small part to the east. The 

bare land is quite extensive and 

dominated by land from disused coal 

mines and ones that are still actively 

operating. The stands vegetation is quite 

extensively distributed in the north, east, 

and southern parts of Samarinda City.  

The area is dominated by wild 

forests/wild habitats and some points are 

sites of revegetation of former coal mine 

land. The most visible water body is the 

Mahakam River, and to a lesser extent 

dams, lakes, and water basins of former 

coal mines. The stands vegetation on 

green open space is separated from other 

land cover classes as material for 

masking Sentinel-1A imagery. 

 

3.2  Accuracy Assessment of Land  

Cover Classification 

The results of the land cover 

accuracy test showed an accuracy value 

of 88.83%, with a kappa coefficient of 

0.8427. According to Anderson (1971, in 

Anderson et al., 1976), the minimum 

acceptable accuracy of remote sensing 

data classification results is 85%. Based 

on that, the accuracy in this case of 

88.83% is acceptable for use in the 

subsequent analysis.  

The agreement rate of accuracy 

measured from the kappa coefficient also 

showed a very strong level, with a kappa 

coefficient value of 0.8427. This shows 

that the accuracy value obtained was not 

on the basis of chance (accidental). Based 

on the accuracy and coefficient of kappa 

obtained, extracted land cover could be 

used for further analysis in the study. 

The accuracy test results are presented in 

Table 3-1. 

 

 

Figure 3-1: Land Cover Map of Samarinda City 
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Table 3-1: Confusion Matrix of Land Cover Classification 

 

3.3 Statistical Analysis 

3.3.1 Data Normalization 

It is important to perform data 

normality tests as a consequence of the 

use of parametric inferential analysis 

techniques that require normal 

distributed data assumptions. In this 

case, normality tests were conducted 

qualitatively using histograms, normal 

curves and probability plots, and 

quantitative normality tests were 

performed using Kolmogorov-Smirnov. 

Based on Figure 3-2 (a), it can be seen 

that the sample dataset is mostly within 

the normal curve. This shows that the 

sample dataset is distributed normally. 

Some data appear to be out of the range 

of normal curves, which indicates outlier 

data or an overestimated value compared 

to the overall sample dataset. Based on 

Figure 3-2 (b), it can be seen that the data 

distribution is grouped on a 1:1 plot line. 

This shows that the sample dataset used 

is distributed normally, based on the 

interpretation of the 1:1 line on the 

probability plot.  

 The assessment of data normality 

using Kolmogorov-Smirnov was 

conducted by comparing the distribution 

of data in the sample and the raw 

distribution, and comparing the 

distribution of data in the sample and the 

error margin (α) of 0.05. Distributed data 

are normal when the distribution of the 

data in the sample (diff, max) < the raw 

distribution (diff, α), and/or the 

distribution of data in the sample (diff, 

max) > α. The results of the normality test 

data using Kolmogorov-Smirnov are 

presented in Table 3-2. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-2: (a) Histogram and normal curve, (b) Probability plot  

  Reference   

  

Built-

up Area 

Bare 

Land 

Water 

Body 

Non-

stands 

Vegetation 

Stands 

Vegetation 

Total 

line 

User Acc. 

(%) 

Tentative 

Built-up Area 39 3 0 1 0 43 90.70 

Bare Land 9 48 1 0 0 58 82.76 

Water Body 0 0 14 0 0 14 100.00 

Non-stands 

Vegetation 0 0 0 105 14 119 88.24 

Stands 

Vegetation 0 0 0 16 144 160 90.00 

 Total Column 48 51 15 122 158 394  

 

Producer Acc. 

(%) 81.25 94.12 93.33 86.07 91.14   

 

Omission Error 

(%) 18.75 5.88 6.67 13.93 8.86   

 Total Acc. (%) 88.83       

 

Kappa 

Coefficient 0.843       

(b) (a) 
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Table 3-2: Normality test results using Kolmogorov-Smirnov 

 

Based on Table 3-2, it can be seen 

that the data distribution values in all the 

sample datasets have a maximum value 

(diff, max) < the standard distribution 

(diff, α) of 0.200, in addition to the 

distribution of data in the sample (diff, 

max) > an error margin (α) of 0.05. This 

ensures that the sample dataset used has 

been distributed normally. 

 

3.3.2 Correlation and Regression 

Analysis 

Correlation analysis was conducted 

using Pearson’s product-moment 

correlation on the predictor variables (X) 

and response variables (Y) on all three 

regression models, namely the simple 

linear, exponential, and polynomial. 

Table 3-3 presents the correlation and 

determination coefficients of all three 

regression modelsBased on Table 3-3, it 

can be seen that the three regression 

models with VH and VV polarisation had 

a positive correlation coefficient (r) with 

carbon stocks. The correlation strength 

in VH polarisation was in the strong 

category, apart from the exponential 

regression models, while in VV 

polarisation, all three regression models 

had correlation forces within the 

moderate category. VH polarisation also 

had a higher coefficient of determination 

(r2) than that of VV. The highest 

coefficient of determination was obtained 

by the polynomial regression model at VH 

polarisation of 0.4717. This suggests that 

the value of the backscatter in the 

polynomial regression model can model a 

carbon stock of 47.17%, while 52.83% 

was influenced by factors other than this 

value. 

Significance tests were conducted 

using a T-partial test and an F-

simultaneous, or ANOVA, test. The 

partial T-test was performed by 

comparing the t-count value with the t-

table value, while the F-simultaneous, or 

ANOVA, test was performed by comparing 

the F-significance value with the α value. 

Table 3-4 presents the results of the 

significance test. 

 

Table 3-3: Correlation and determination coefficients of all three regression models 

Polarization Regression Model 
Correlation 

Coefficient (r) 

Determination 

Coefficient (r2) 
Category 

VH 

Simple Linear 0.686 0.471 Strong correlation 

Exponential 0.673 0.452 Moderate correlation 

Polynomial 0.687 0.472 Strong correlation 

VV 

Simple Linear 0.579 0.299 Moderate correlation 

Exponential 0.574 0.330 Moderate correlation 

Polynomial 0.547 0.335 Moderate correlation 

 

Table 3-4: Significance test results 

Polarisation 
Number of 

Samples 
T-count T-table 

F-

significance 
α 

VH 
45 

6.113 
2.015 

2.73E-07 
0.05 

VV 4.230 0.000124 

 

Sample Dataset 
Number of 

Samples 
Diff, max Diff,α α Description 

VH 

45 

0.0529 

0.200 0.05 

Normal distribution 

VV 0.0617 Normal distribution 

Field Carbon Stock 0.0683 Normal distribution 
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From Table 3-4, it can be seen that 

the t-count value > the t-table value on 

both polarisations, which indicates that 

the backscatter value for both 

polarisations significantly affects the 

value of carbon stocks. The significance 

test was also reinforced by the F-

simultaneous, or ANOVA, test, in which 

the F-significance value < the α value, 

indicating that the predictor variable, in 

which in this case the backscatter value, 

had a significant influence on the 

response variable in the form of carbon 

stock. 

 

3.4 Carbon Stock Estimation Model 

and Accuracy Assessment   

The carbon stock estimation model 

was built on a sample of models that have 

been tested for normality and data 

significance, so it was expected to 

represent the original condition as best as 

possible. Modelling of carbon stock 

estimates was made by applying the 

regression equations that were obtained 

from the Sentinel-1A images. The 

regression equations used are presented 

in Table 3-5. 

The application of the regression 

equations shown in Table 3-5 produced 

an estimated model of carbon stocks with 

different total estimates. The total 

estimate of these indicates different 

sensitivities in the backscatter value to 

carbon stocks, especially with different 

polarisations. The regression model used 

to model the carbon stocks was 

conceptually adapted to the 

characteristics of the backscatter values 

in the samples used. The total estimated 

carbon stock of the three regression 

models with VH polarisation has a lower 

estimated value than that of VV. 

Based on the data, it is evident 

that the exponential models in both 

polarisations consistently obtained the 

lowest total estimated carbon stock 

compared to the other two regression 

models. The accuracy test results are 

presented in Table 3-6  

Based on Table 3-6, it can be seen 

that the accuracy of the model varies 

considerably, with the highest accuracy 

value obtained by exponential models 

with VH polarisation of 87.6% and 

estimated errors of 0.57 tons/pixel. The 

lowest model accuracy was obtained by 

polynomial models with VV polarisation, 

an accuracy value of 13.1%, and an 

estimated error of 4.01 tons/pixel.

Table 3-5: Regression equation for carbon stock estimation model 

 
Table 3-6: Model accuracy test results 

Polarisation 
Regression 

Model 

Estimated Error 

(tons/pixel) 

Maximum 

Accuracy (%) 

Minimum 

Accuracy (%) 

VH 

Simple Linear 1.27 72.4 59.9 

Exponential 0.57 87.6 82.1 

Polynomial 0.89 80.7 71.9 

VV 

Simple Linear 1.30 71.8 58.9 

Exponential 1.01 78.2 68.2 

Polynomial 4.01 26.5 13.1 

Polarization Regression Model Regression Equation 
Carbon Stock 

(Tons) 

VH 

Simple Linear Y = 0.6568x + 10.519 7,248,978.9 

Exponential Y = 34.579e0.2279x 6,489,478.1 

Polynomial 
Y = 0.0157x2 + 0.9768x + 

12.106 
6,974,219.9 

VV 

Simple Linear Y = 0.55333x + 6.2232 7,625,805.9 

Exponential Y = 8.2751e0.1789x 7,100,536.5 

Polynomial 
Y = -0.0923x2 - 0.2449x + 

4.7211 
7,666,575.7 
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(a) (b) 

 

Figure 3-3: (a) VH exponential model carbon stock map and (b) VV exponential model carbon 

stock map 

 

The exponential VV and VH 

polarisation models were recorded to 

have the highest accuracy compared to 

the others. This showed consistency in 

the exponential models in modelling 

carbon stocks; previously, the total 

estimated value of exponential model 

carbon stocks in both polarisations also 

had the lowest value compared to the 

other two models. 

Visually, the spatial distribution 

ofstands vegetation tends to be grouped 

in the northern and southern parts of 

Samarinda City. Higher carbon stock 

classes tend to be distributed in the 

northern part of the city, which is 

administratively located in North 

Samarinda Subdistrict and part of 

Samarinda Ulu Subdistrict. This is 

because the area has vegetation with 

typology ranging from wild forests/ 

habitats to urban forests, so the 

distribution is quite extensive compared 

to other subdistricts. The spatial 

distribution of carbon stocks can be seen 

in Figure 3. 

 

4 CONCLUSION 

The results show that the estimated 

carbon stock on the surface using the VH 

exponential model was 6,489,478.1 tons, 

with an accuracy of 87.6% and an 

estimated error of 0.57 tons/pixels, while 

the exponential VV models produced a 

figure of 7,100,536.5 tons with an 

accuracy of 78.2% and an estimated error 

of 1.01 tons/pixel. Distributed carbon 

stocks tend to group to the north, south, 

and east, and to a lesser extent to the 

west of the city. Administratively, spatial 

distribution of carbon stock is extensively 

distributed in North Samarinda, 

Samarinda Ulu, Sambutan, and Palaran 

subdistricts. 
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