
Development of Flight Control Panel Interface for
Electronic Flight Control System of High Aspect Ratio Light

Utility Aircraft
Eries Bagita Jayantia), Sayr Bahrib), Novita Atmasaric), Adi Wirawand)

National Institute of Aeronautics and Space (LAPAN), Indonesia
a)Corresponding author: eries.bagita@lapan.go.id

b)sayr.bahri@lapan.go.id
c)novita.atmasari@lapan.go.id

d)adi.wirawan@lapan.go.id

Abstract. LAPAN Surveillance Aircraft (LSA) - 02 is a high aspect ratio light utility aircraft that is supplemented with Electronic
Flight Control System (EFCS) to perform as an Unmanned Aerial Vehicle (UAV) technology demonstrator. To perform its mission,
the test pilot onboard has to input commands via Human Machine Interface (HMI) namely Flight Control Panel (FCP) which is a
part of EFCS. The FCP has three main functions which are to load and send initialization data to Flight Control Computer (FCC),
to allow the pilot to enter data or give commands manually to FCC, and to display information of sensor, modes, and vice versa to
the pilot. However, FCP is merely an input-output device that does not contain algorithms or functions related to aircraft and its
flight control system. Therefore, it is required to develop Flight Control Panel Interface (FCPI) to interpret signals from buttons
and knobs on FCP, convert and condition those signals to Flight Control Laws (FCLs), and feeds back those signals and other
information such as modes and sensors to FCP. The research in this paper shows the development of FCPI which is integrated into
the previously developed FCLs model. The development process adopts V model method which starts from the definition of
requirements, design of software, and verification by means of EFCS simulation. The results are the refinement of EFCS
architecture and FCPI is developed for autopilot functions such as airspeed, heading, altitude, and vertical speed.

INTRODUCTION

Electronic Flight Control System (EFCS) is developed for LAPAN Surveillance Aircraft (LSA) – 02 to perform
UAV Technologies. LSA – 02 uses a high aspect ratio light utility aircraft namely STEMME ES-15 which is
manufactured in Germany shown as in FIGURE 1. The EFCS is then supplemented to the basic aircraft and transforms
the conventional mechanically controlled aircraft into an automatically controlled aircraft. Maneuvers performed
during the EFCS mode is realized by using Flight Control Laws (FCLs)1–3. FCLs software is planted inside Flight
Control Computer (FCC). It receives signals from Flight Control Panel (FCP) and sensor and produces signals to
actuators and FCP4,5. FCP is operated mainly by a test pilot on board. FCP can be optionally operated from the ground
control station. The basic function developed for FCP is autopilot mode which consists of airspeed control, heading
control, altitude control, and vertical speed control6–8. FCP is placed on the avionics panel in front of the pilot and is
the main interface between the test pilot and EFCS of the LSA-02 Technology Demonstrator.

The FCP is developed inside research cooperation between LAPAN Indonesia and TU Berlin Germany by
LAPAN’s requirements. The device displays information on the 7" TFT display which is protected by the shatterproof
glass as a safety feature6. The pilot gives inputs through the buttons and knobs which are located surrounding the
display. FCP has three main functions which are to load and send initialization data to the FCC to be read by FCLs,
to allow the test pilots to enter data or give commands manually to EFCS, and to display information to the test
pilots6,8. In the process of FCP giving or getting information from FCLs, there is Flight Control Panel Interface (FCPI)
which acts as a link between FCP and FCLs.

The reason of FCPI exists that FCP is designed only as an input-output device which means it is not allowed to be
equipped with algorithms and functions which are related to aircraft and its flight control system. Therefore, it is
essential to construct FCPI to realize these algorithms and functions. FCPI plays an important role to interpret signals
generated from FCP which is formed in CAN communication, to convert and condition those signals to FCLs, and to
feedback those signals and other information such as modes and sensors returning to FCP. This paper discusses
research about the development of FCPI by following a development process called V model. The V model represents
the relationships between each phase of the development life cycle and its associated phase of testing and verification.
This research is performed by stages such as defining the concept and requirements of FCPI, constructing architecture,

The 8th International Seminar on Aerospace Science and Technology – ISAST 2020
AIP Conf. Proc. 2366, 020014-1–020014-14; https://doi.org/10.1063/5.0061262

Published by AIP Publishing. 978-0-7354-4123-1/$30.00

020014-1

formulas, and design of FCPI, integrating the FCPI model to its parent models that are EFCS and aircraft, and
performing FCPI verification with respect to the defined requirements.

FIGURE 1. STEMME ES-15

The objectives of this research are to develop FCPI in the Model in the Loop (MIL) level and to perform
verification tests for FCPI design. The development of the FCPI in this paper is focused on implementing defined
autopilot functions which are airspeed control, heading control, altitude control, vertical speed control, and vertical
mode select.

LITERATURE REVIEW

V Model

The development process of the FCPI follows the V model9. The left leg of the V shape represents the evolution
of user requirements into smaller components through the process of decomposition and definition in detailed design.
On the other hand, the right leg represents the integration and verification of the system components. For the
development process, the requirements shall be firstly defined, which are derived from the upper level requirements9–

11. Writing the requirements, FCPI design shall have proceeded. Finally, the FCPI codes shall be verified against the
written requirements. The illustration of V model for the development process of FCPI is shown in FIGURE 2.

Coding

FCPI
Definition

Aircraft
Definition

FCPI
Simulation

Aircraft
Simulation

Verification

Verification

FIGURE 2. The V model of FCPI development

The V model consists of the number of development steps such as aircraft and FCPI concepts, requirements,
specifications definition, FCPI coding, FCPI, and aircraft integration and verification by means of simulations. The
work of concepts, requirements, and specifications definition has the purpose to arrange preparation prior to design.
This work may occur to cycle internally and iteratively in each step. Here, the aircraft concept, requirements, and
specifications are given from an upper level document. Later, the FCPI concept and requirements definition is
performed. The definition includes, for example, the concept of FCPI software architecture and writing requirements
of input-output variables. After that, the process continues to FCPI software block diagram construction, logic and
equations formulation, and software coding. The next process is to integrate parameters and variables to FCPI software
and run a verification test. Completing the FCPI simulation, the FCPI model is subsequently integrated into the EFCS

020014-2

model which is connected to the aircraft model. Here, aircraft simulation is conducted to perform final verification
tests for FCPI development.

Architecture of EFCS

EFCS is developed to couple to the aircraft basic mechanical control system. This system is able to take over the
aircraft control via an electro-mechanical actuation system that moves the basic mechanical control linkages. The
aircraft maneuver is controlled by FCLs with commands come from the test pilot or optionally from the ground control
station. EFCS supports automatic flight control mode which is activated by the test pilot when sending input
commands to EFCS via FCP. The EFCS in automatic control mode can control the aircraft in all axes in longitudinal
and lateral motions.

EFCS consists of two main parts which are the Basic Electronic Flight Control System (BEFCS) and Experimental
System (XS). BEFCS provides the basic control functions which are computed by FCLs. BEFCS provides limited
authority for XS to run experimental flight mode. BEFCS contains FCP, sensors, FCC, and actuators. XS is an
additional system that is linked to the BEFCS via FCC. The XS can control aircraft via selected entry points which
are regulated by FCC to limit XS authority. The XS receives a sensor signal from BEFCS and it is possible to install
experimental payloads such as experimental sensors, radar, or camera. The XS reliability is not the main goal but to
perform experimental functions as it is already monitored and controlled by reliable BEFCS. The architecture of EFCS
is shown in FIGURE 3.

EFCS

BEFCS

FCP

Sensors

FCC

B
A

XS

Actuator
Aircraft

Data Link

Basic Aircraft

Safety
System

FIGURE 3. Architecture of EFCS

Architecture and Concept of FCP

FCP is the main human-machine interface (HMI) between the test pilot and EFCS of LSA-02 technology
demonstrator aircraft6. The FCP which is placed on the avionics panel in front of the test pilot has three main functions
i.e. to load and send initialization data to the FCC to be read by the FCLs, to enable the test pilot to enter data or give
commands manually to the EFCS, and to display information of sensors, modes, and vice versa to the test pilot. The
architecture of FCP and the allocation of buttons and knobs are set in FIGURE 412. The figure shows the names of the
buttons and knobs. The button’s name is stated as “PB” which means push button which is followed by a unique
number. While “R” stands for rotary switch or knobs which is also followed by a unique number12. The FCP provides
in total 29 buttons and 6 rotary switches/knobs. The words in the second and third-row under buttons and knobs names
represent the unique output data every time they are activated by pressing or turning12. The output data is listed in
TABLE 1.

020014-3

PB2
0x01
d01

PB1
0x00
d01

R7
0x1d<>0x1e
d29<>d30

R5
0x21<>0x22
d33<>d34

R3
0x25<>0x26
d37<>d38

R1
0x29<>0x2A

d41<>d42

PB29 R6 R4 PB26

PB28 PB27

0X1c
d28

0x23<>0x24
d35<>d36

0x27<>0x28
d39<>d40

0X19
d25

0X18
d27

0X1A
d26

BU
TTO

N

KNOBS

PB3
0x02
d02

PB4
0x03
d03

PB5
0x04
d04

PB6
0x05
d05

PB7
0x06
d06

PB8
0x07
d07

PB9
0x08
d08

PB10
0x09
d09

PB25
0x18
d24

PB24
0x17
d23

PB23
0x16
d22

PB22
0x15
d21

PB21
0x14
d20

PB20
0x13
d19

PB19
0x12
d18

PB18
0x12
d18

PB17
0x10
d16

ACTUAL VALUE

COMMAND VALUE

PANEL

PB11
0x0A
d10

PB12
0x0B
d11

PB13
0x0C
d12

PB14
0x0D
d13

PB15
0x0E
d14

PB16
0x0F
d15

BU
TT

O
N

BUTTON

FIGURE 4. General Architecture of FCP drawn with blue line boxes. Button and Knobs identities are uniquely defined

TABLE 1. List of FCP keyboard data

Name Data (Hexadecimal) Data (Decimal)
Rot1L 0x29 41
Rot1R 0x2a 42
Rot3L 0x25 37
Rot3R 0x26 38
Rot4L 0x27 39
Rot4R 0x28 40
Rot5L 0x21 33
Rot5R 0x22 34
Rot6L 0x23 35
Rot6R 0x24 36
Rot7L 0x1d 29
Rot7R 0x1e 30
PB26 0x19 25
PB27 0x1b 26
PB28 0x1a 27
PB29 0x1c 28

020014-4

RESULTS

Requirements of FCPI

The requirements definition begins with constructing the concept of EFCS phases which are shown in FIGURE 5.
The EFCS phases occur inside the aircraft phase which contains take-off, climb, cruise, descent, and land. Aircraft
systems including EFCS are turned on before starting to take-off. Here, EFCS is on but disengage which means the
aircraft is still in manual flight mode. During this phase, FCC inside EFCS only monitors the aircraft maneuvers
through EFCS sensors. After the aircraft is in the cruise phase, the test pilot is allowed to engage EFCS which causes
the aircraft to convert from manual flight mode to electronic flight mode. However, during the EFCS engagement, the
EFCS only maintains the previous steady flight condition. Right after the test pilot engages FCP and enters commands
through buttons and knobs on FCP, the EFCS controls the aircraft's motion with respect to given commands.
Completing the mission, the test pilot is then allowed to disengage FCP and subsequently disengage EFCS which
returns the aircraft from electronic flight mode to manual flight mode. From there, the pilot can proceed to the next
aircraft phases which are descent and land.

EFCS
disengage

EFCS
engage

FCP
engage

FCP
disengage

EFCS
disengage

FIGURE 5. EFCS Phases

After FCP is engaged, the EFCS still maintains the previous steady flight condition. However, the test pilot now
is able to enter specific commands via FCP. FCP shall show the sensor's measurement through actual value indicators.
Note that the current developed autopilot mode covers only airspeed, heading, altitude, vertical speed, and vertical
mode. Therefore, there are four actual value indicators plus a vertical mode indicator. In addition, the command value
indicators placed under the corresponding actual value indicators show the commanded values taken from previous
steady flight condition. The test pilot shall examine the vertical mode indicator and push the vertical mode button to
go to the next vertical mode. The altitude control and the vertical speed control cannot run simultaneously so that it
needs to be selected which control needs to execute via the vertical mode button. The default vertical mode is altitude
and the other mode is vertical speed. Subsequently, the test pilot shall turn the knobs for changing desired commands
for airspeed, heading, and altitude or vertical speed. By turning the knobs, the test pilot selects the precommand value.
To enable an efficient input method, knobs for heading and altitude are equipped with coarse and fine-tunes. The pre
command values are displayed in command value indicators. The pre command value limiters are activated when
knobs are turned continuously to excess permitted commands. When the displayed precommand values are matched
with the desired values, the test pilots shall activate these precommand values to command values by pressing the
knobs.

,,,, cccc hhV

,,,, hhV
FCP FCPI FCLs

FCC

RKI

TMI

FIGURE 6. Block diagram of FCP and FCC

FCP is merely an input-output device that infers that there are no algorithms and functions related to aircraft and
its flight control system exist. FCPI is developed to cover these algorithms and functions so that FCC is able to interpret
precommand values set up when knobs are turned, to detect command values when knobs and vertical mode button
are pressed. In addition, FCC can limit excessive inputs from knobs when they are violating predefined commands
protection. Furthermore, FCC is able to send information of sensors measurement and commands to FCP. On the other
hand, the commands activated via knobs are transmitted by FCPI to FCLs so that the FCLs can realize the aircraft
maneuvers based on given commands. The working mechanism of FCP and FCC where FCPI and FCLs are developed
is displayed in FIGURE 6.

020014-5

FCPI acts as a control link between FCP and FCLs. FCPI shall be divided in two functionality components which
are commands receiver and display transmitter which is called FCPI Command (FCPIC) and FCPI Display (FCPID)
respectively. FCPIC processes physical interpretation for turning knobs and pressing knobs and vertical mode button
sets protection limits for precommand inputs, detects commands activation from knobs pressing, and transmits these
commands to FCLs. FCPID gathers preset precommand inputs values and current sensors information and converts
them into American Standard Code for Information Interchange (ASCII) signals type prior to transmitting these
signals to FCP. FCPI shall be equipped with parameters of push buttons and knobs unique identification number which
is called as Receive Key Identification (RKI).

FCPI consists of some numbers of functions such as read function, limit function, activate function, and ASCII
conversion function. Read function shall be able to determine if a knob is turned clockwise or counter clockwise for
how many steps which represent precommand increment, to obtain precommand reference which is initially obtained
from previous steady flight condition, and to compute final real precommand value. In addition read function shall be
able to detect if the vertical mode button is pressed, to cycle vertical mode value when the button is pressed again, and
transmit vertical mode input to FCLs. The limit function shall be able to limit inputted precommand value. Therefore,
the limit function is provided with unique permissible ranges command values for airspeed, heading, altitude, and
vertical speed. Activate function shall be able to detect if knobs and vertical mode buttons are pressed. Each command
has its unique activation RKI. Receiving the activation RKI, the activate function takes the last given precommand
value to become a command value and transmit it to FCLs. ASCII conversion function has purpose to convert
precommand values including the vertical mode and associated sensor values from decimal signal type to ASCII signal
type. During its process, there may be also unit conversions such as kilometer an hour from meter per second and
degree from radian. The FCP is designed to receive ASCII signal type to be displayed on the FCP screen as decimal
signal type. Here, ASCII conversion function transmits 6 bytes of signals which are called Transmit Message
Identification (TMI) for each information of precommand values and sensor values. The ASCII conversion unit also
ensures that each 6 information goes to the assigned actual value, command value, or vertical mode indicators.

After constructing the concept of FCPI contained architecture and functionalities and also deriving from upper-
level requirements, the FCPI requirements are written carefully and its summary is listed in TABLE 2.

TABLE 2. Requirements of FCPI
No. Title Description
1. FCPI component FCPI Command (FCPIC) and FCPI Display (FCPID)
2. FCPIC part Airspeed, heading, altitude, vertical speed, vertical mode interface command
3. FCPID part Precommand input and sensor interface
4. Interface command item Read, limit, activate functions
5. Interface display item ASCII convert functions
6. Button and knobs selection Button for vertical mode

Knobs for airspeed and vertical speed
Double Knobs for heading and altitude

7. Changing input values Turn left (counter clockwise) to decrease and turn right (clockwise) to increase.
8. Value changes increment Airspeed , fine heading , coarse heading , fine altitude

, coarse altitude , vertical speed .
9. Vertical mode Altitude mode = 1, Vertical speed mode = 2.
10. Read Function Identify RKI and increment based on trim point reference
11. Limit function Airspeed precommand (), Heading precommand (

), Altitude precommand (), Vertical
speed precommand ()

12. Activate Function Activate precommand to command input.
13. Actual value Display sensor value of Airspeed , heading , altitude , and vertical

speed
14. Command value Display precommand for Airspeed , heading , altitude , and

vertical speed
15. Vertical mode value Display status for vertical mode value
16. Unit converter Convert to SI unit for computation of logics and formulas.
17. ASCII converter Convert to ASCII for TMI

020014-6

Design of FCPI

Based on written requirements, FCPI block diagram is constructed. Signal flows two way between FCP and FCC
but here, it is graphically separated so that the signal flows as only in one direction from left to right. FCP is then
divided into FCP Command (FCPC) and FCP Display (FCPD). FCPI is also separated based on its functionality, i.e.
FCPIC and FCPID. FCPIC receives RKI signals to FCPC while FCPID transmits TMI signals to FCPD. FCPIC
consists of read function, limit function, and activate function while FCPID comprises ASCII convert function. The
block diagram of FCPI is shown in FIGURE 7.

FCP
COMMAND

FCPI COMMAND

Read Limit Activate
ASCII

Convert

FCPI DISPLAY

FCP
DISPLAYFCLs

FIGURE 7. Block diagram of FCPI which is divided to FCPI Command (FCPIC) and FCPI Display (FCPID)

Read Function

Read function basically recognizes RKI for specific precommand either airspeed, heading, altitude, vertical speed
or vertical mode commands. Airspeed and vertical speed consist of RKI for increase by turning clockwise knob,
decrease by turning counterclockwise knob, and activate by pressing knob. Heading and altitude RKI have similar
behavior but they are extended to be coarse increase by turning clockwise outer knob, fine increase by turning
clockwise inner knob, coarse decrease turning counterclockwise outer knob, fine decrease by turning
counterclockwise inner knob, and activate by pressing the knob. Vertical mode only consists of RKI for increase.
However, since there are only two values for vertical mode, i.e. 1 for altitude which is set as default and 2 for vertical
speed then pressing vertical mode button will set vertical mode from 1 to 2 and pressing the button again will cycle
the vertical mode from 2 to 1. There is no activate RKI for vertical mode which means every time vertical mode button
is pressed the vertical mode changes from one altitude control to vertical speed control or other way around. Every
time increase or decrease RKI for specific precommand is pressed, the read function counts and saves number of steps
resulted from turning the knob. In addition, the read function shall get the reference precommand which is obtained
from the previous steady flight conditions with respect to the specific precommand. Without current reference, read
function will always start from zero which creates faulty maneuvers especially for airspeed and altitude. The block
diagram of read function is depicted in FIGURE 8.

cipXRead
Function

RKI

FIGURE 8. Read Function

Read functions for airspeed and vertical speed contains algorithms which can be written as follows
(1)

with , index “cip, pr “ stands for previous precommand input, index “cir” stands for command input reference,
and index “cip” stands for precommand input. Note that in right hand side is obtained from sensor measurement
at , and save it to memory to be maintained for following iteration time. When new is yielded, the right hand
side is updated in the next iteration time. In addition, the read functions for heading and altitude contains slightly
more complicated algorithms since they have coarse and fine decrease and increase. The algorithm can be seen in
following

020014-7

(2)

with . Index “cip, pr“ stands for previous precommand input, index “cir” stands for command input reference,
index “cip,cr” stands for coarse precommand input, index “cip,fn” stands for fine precommand input, and index “cip”
stands for precommand input. Note that in right hand side is obtained from sensor measurement at , and save it
to memory to be maintained for following iteration time. When new is yielded, the right hand side is updated
in the next iteration time. Finally, the read function for vertical mode is more simply and is written to be following.

(3)

with Mod(VER) stands for vertical mode, index “pr” stands for previous.

Limit Function

Limit function checks if incoming precommand does not exceed boundaries of permissible precommand values.
Violating the maximum permissible precommand value, the given precommand shall be set at maximum limit while
in case of exceeding minimum permissible precommand value, the given precommand shall be set at minimum limit.
Block diagram for limit function is shown as FIGURE 9 and logic for limit function is written in equation 4.

cipX Limit
Function

cipX

FIGURE 9. Limit Function

(4)

with . Index “cip” stands for precommand input, index “cip,mn” stands for minimum precommand
input, and index “cip,mx” stands for maximum precommand input. For heading command limit function, it has
purpose to cycle command from zero to less than 2 or which can be realized by implementing following
equation.

(5)

with index “cip,o” stands for output precommand input and index “cip,i" stands for input precommand input.
Vertical mode limit function is realized by cycle the previous RKI to the next RKI, i.e. from 1 to 2 and from 2 to 1.
The algorithm is given to be following.

(6)

020014-8

Activate Function

Activate function simply activates specific precommand input into command input. This function is available only to
airspeed, heading, altitude, and vertical speed. The vertical mode does not need to possess activate function as selection
to vertical mode shall go the next value of vertical mode. The activate function is depicted in FIGURE 10.

Activate
Function

)(XActvRKI

FIGURE 10. Activate Function

Activate function is defined in the following equation.

(7)

with

Verification of FCPI

The verification of FCPI is conducted to evaluate if the requirements of the FCPI are correctly implemented.
Verification is done both in architecture and functionality. The architecture consists of block diagrams which comprise
functions such as read, limiter, activate and ASCII converter. The implementation of architecture and functions is
done by means of MATLAB/Simulink.

Architecture

The FCPI consists of two components, i.e. FCPIC and FCPID which have separate purpose to receive RKI and to
transmit TMI respectively. The implementation of FCPIC and FCPID is depicted in FIGURE 11 and FIGURE 12.

FIGURE 11. FCPIC implementation in Simulink model

.
FIGURE 12. FCPID implementation in Simulink model

020014-9

Following architecture is availability of FCPIC part which consists of airspeed, heading, altitude, vertical speed,
and vertical mode interface command. On the other hand, FCPID part contains precommand input and sensor interface.
The FCPIC and FCPID parts verification is displayed in FIGURE 13 and FIGURE 14.

FIGURE 13. FCPIC part implementation in Simulink model.

FIGURE 14. FCPID part implementation in Simulink model.

In each airspeed, heading, altitude, vertical speed interface commands shall be constructed with read, limit and
activate functions while for the vertical mode shall only consists of read and limit function. Units for airspeed and
heading prior entering read function are converted to meter per second and radian respectively. The implementation
for these functions availability are depicted in FIGURE 15 and FIGURE 16.

FIGURE 15. Example for read, limit and active functions for airspeed command

020014-10

FIGURE 16. Read and limit functions for vertical mode command
On the other hand, interface display only possesses ASCII converter both for precommand input and sensor

interface. Units of precommand input interface for airspeed and heading are converted to kilometer an hour and degree
respectively. The implementation for ASCII convert function is given in FIGURE 17.

FIGURE 17. Example of ASCII convert function in airspeed precommand input

Functions

The FCPI model consisted of FCPIC and FCPID components is integrated to FCC model inside EFCS model. The
FCPIC is integrated to input interface of FCC while FCPID is integrated to output interface of FCC. The EFCS is
connected to aircraft model in order to run aircraft simulation for FCPI functionality verification purpose. The
integration of FCPI to FCC and the connection between EFCS to aircraft are displayed in FIGURE 18 and FIGURE
19.

FIGURE 18. Integration FCPI to FCC

FIGURE 19. Connection of EFCS to aircraft

Prior to functionality verification, tests definition is set up. The tests definition has purpose to plan the verification
tests in order to examine if FCPI fulfills the written requirements specifically for changing input values, value changes
increment, vertical mode, read function, limit function, activate function, actual value, command value, and vertical

020014-11

mode value. These requirements have been already stated in TABLE 2. In this paper, the tests definition discussed is
focused on two tests, i.e. the verification for precommand and verification for vertical mode.

FIGURE 20. An example verification for actual and command for airspeed

For the first test, RKI for precommand value is given several times then RKI for activate is sent. An example for
verification result is given in FIGURE 20. The airspeed knob is turned clockwise for 10 steps from 0 to 20 seconds.
Each steps will produce RKI of 30 which means increment of 1 km/h and 10 steps result to 10 km/h. From FIGURE
20, it shows that the airspeed precommand input increases from reference of 130 km/h to 140 km/h. This verifies the
read function is able to identify that airspeed knob is turned clockwise for 10 steps and to get airspeed reference of
130 km/h from previous steady flight condition. The precommand changes is displayed correctly on command value
indicator. In addition, the precommand input does not violate limit function hence the input is kept displayed its
designated value. Up until 20 seconds the airspeed response still maintains its reference at 130 km/h which is displayed
in on actual value indicator. This verifies that precommand input has not activated and only is displayed in command
value. At 25 seconds, the airspeed knob is pressed and this generates RKI of 28 which is plotted in Fig. 20.
Subsequently, the activate function detects the RKI for airspeed command activate, sets the final airspeed precommand
input of 140 km/h to be airspeed command of 140 km/h, and transmits to FCLs. The result shows that the airspeed
responses by following the given command. The airspeed response is depicted on actual value indicator. From the
first test result, it can be verified that requirements for changing input values, value change increment, read function,
limit function, activate function, actual value, and command value are complied.

The second test is to verify vertical mode functionality. For this test, vertical mode is selected at default value.
Then, RKI for altitude precommand and activate are given. Subsequently, RKI for vertical speed precommand and
activate are inputted. Later RKI for vertical mode is excited. An example of verification result is given in FIGURE
21. The altitude fine knob is turned clockwise for 5 steps from 0 to 10 seconds. Each steps will produce RKI of 40
which means increment of 10 m and 5 steps result in 50 m. Therefore, the altitude goes from 1000 m to 1050 m. At
13 seconds, RKI of 26 for altitude activate is sent. Later, RKI of 41 for vertical speed precommand is given twice.
This means the vertical speed knob is turned clockwise for 2 steps from 20 to 22 seconds which results vertical speed
is given precommand from 0 to -1 meter per seconds. At 30 seconds, RKI of 25 for vertical speed activate is sent.
Then, RKI of 14 for vertical mode is given at 60 seconds. The second row of FIGURE 21 shows vertical mode select
which is displayed on vertical mode value indicator. This means RKI of 14 sent at 60 seconds is verified from vertical
mode value. The third row of FIGURE 21 shows altitude precommand from 0 to 10 seconds which is displayed on
altitude command value indicator. This verifies the first ten seconds RKI input shown in the first row of this figure.
Then, at 13 seconds, altitude command is activated and altitude responses following the altitude command. The
altitude response is displayed on altitude actual value indicator. The response of altitude complies selected vertical
mode of 1 which is activated until 60 seconds. This verifies that the current vertical mode value only activates altitude

0 10 20 30 40 50 60 70 80 90 100
0

20

40
R

K
I

Precommand and activate RKI

0 10 20 30 40 50 60 70 80 90 100
125

130

135

140

145

t [s]

V
 [k

m
/h

]

Actual and Command Values

Airspeed precommand
Airspeed command
Airspeed response

020014-12

control. It is also supported from the given vertical speed precommand at 20 seconds and vertical speed activate at 30
seconds. Those vertical speed control input does not affect the altitude response because the vertical mode is still at
altitude mode. Only after vertical mode selected to value of 2 or vertical speed mode, the vertical speed control is
active and it can be seen that the vertical speed response follows the vertical speed command and also altitude response
no longer holds the current value but drops as consequence of negative vertical speed command. In conclusion, the
verification test shows compliances especially toward requirement of vertical mode. In addition, other requirements
such as changing input values, value changes increment, read function, limit function, activate function, actual value,
command value, and vertical mode value are complied.

FIGURE 21. An example verification for vertical mode of altitude and vertical speed

CONCLUSIONS

The development of FCPI in MIL level has been accomplished which are composed from two development phases
i.e. FCPI concept and requirements definition and FCPI design. The FCPI concept is derived from EFCS phase concept
comprised EFCS and FCP engage – disengage sequence and FCP operational concept. The FCPI requirements are
written with respect to FCPI components, FCPI parts, FCPI items, button and knobs selection, changing input values,
value changes increment, vertical mode, read function, limit function, activate function, actual value, command value,
vertical mode value, unit converter, and ASCII converter. FCPI design is shown from block diagram of FCPIC and
FCPID. In addition, the equations for read function, limit function, and activate function for airspeed, heading, altitude,
vertical speed, and vertical mode have been written.

0 10 20 30 40 50 60 70 80 90 100
0

20

40

R
K

I

Precommand, activate, and vertical mode select RKI

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3
Vertical mode select

M
od

(V
E

R
)

0 10 20 30 40 50 60 70 80 90 100
980

1000
1020
1040
1060
1080

h
[m

]

Altitude

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

_ h[
m

s!
1]

t [s]

Vertical speed

Precommand
Command
Response

020014-13

The verification tests have been defined and performed. The verification shows that FCPI requirements are
satisfactorily complied. Verification on architecture such as implementation of FCPIC and FCPID, FCPIC and FCPID
parts, and availability of read function, limit function, and activate function has been shown. Verification examples
for precommand, activate, and vertical mode have been thoroughly discussed. The examples verifies requirements
such as button and knobs selection, changing input values, value changes increment, vertical mode, read function,
limit function, activate function, actual value, command value, and vertical mode value.

REFERENCES

1. Bahri, S. Development of Flight Control Laws for The Basic Electronic Flight Control Systems of The LSA-
02 Technology Demonstrator Aircraft. (Institut Teknologi Bandung, 2018).

2. Bahri, S. Longitudinal flight control laws for high aspect ratio light utility aircraft. in 6th International Seminar
of Aerospace Science and Technology -ISAST 2018 (IOP Conf. Series: Journal of Physics: Conf. Series, 2018).
doi:10.1088/1742-6596/1130/1/012026

3. Suseno, P. A. P. & Bahri, S. Experimental flight control function for electronic flight control system of high
aspect ratio light utility aircraft. in 7th International Seminar on Aerospace Science and Technology – ISAST
2019 (AIP Conference Proceedings, 2019). doi:https://doi.org/10.1063/5.0002315

4. Bahri, S. & Sasongko, R. A. Development of Nonlinear Flight Mechanical Model of High Aspect Ratio Light
Utility Aircraft Development of Nonlinear Flight Mechanical Model of High Aspect Ratio Light Utility
Aircraft. in 5th International Seminar of Aerospace Science and Technology (2018).

5. Lamp, M. & Luckner, R. Flight Control Law Development for the Automatic Flight Control System LAPAZ.
in Conference in Guidance, Navigation and Control in Aerospace (2011).

6. Wirawan, A. Development and Test of The Software for The Flight Control Panel of LSA-02 Technology
Demonstrator Aircraft. (Institut Teknologi Bandung, 2018).

7. Dalldorff, L., Luckner, R. & Reichel, R. A Full-Authority Automatic Flight Control System for the Civil
Airborne Utility Aircraft S15 – LAPAZ. 887–906 (2013).

8. Wirawan, A. & Indriyanto, T. Design of Flight Control Panel Layout using Graphical User Interface in
MATLAB. in 5th International Seminar of Aerospace Science and Technology (2018).

9. Certification Considerations For Highly Integrated or Complex Aircraft Systems. (PA: SAE ARP 4754,
1996).

10. Forsberg, K. & Mooz, H. 7.17. System Engineering for Faster, Cheaper, Better. INCOSE Int. Symp. 8, 917–
927 (1998).

11. Forsberg, K. & Mooz, H. The Relationship of System Engineering to the Project Cycle. in The 12th
INTERNET World Congress on Project Management (1994).

12. Wirawan, A. & Jayanti, E. B. Desain Awal Flight Control Panel dari Pesawat LSA-02. in Seminar Nasional
Instrumentasi, Kontrol dan Otomasi (SNIKO) 2018 (2018).

020014-14

https://doi.org/10.1088/1742-6596/1130/1/012026
https://doi.org/10.1063/5.0002315
https://doi.org/10.1002/j.2334-5837.1998.tb00130.x

