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Abstract. LAPAN Surveillance Aircraft (LSA) - 02 is a high aspect ratio light utility aircraft that is supplemented with Electronic 
Flight Control System (EFCS) to perform as an Unmanned Aerial Vehicle (UAV) technology demonstrator. To perform its mission, 
the test pilot onboard has to input commands via Human Machine Interface (HMI) namely Flight Control Panel (FCP) which is a 
part of EFCS. The FCP has three main functions which are to load and send initialization data to Flight Control Computer (FCC), 
to allow the pilot to enter data or give commands manually to FCC, and to display information of sensor, modes, and vice versa to 
the pilot. However, FCP is merely an input-output device that does not contain algorithms or functions related to aircraft and its 
flight control system. Therefore, it is required to develop Flight Control Panel Interface (FCPI) to interpret signals from buttons 
and knobs on FCP, convert and condition those signals to Flight Control Laws (FCLs), and feeds back those signals and other 
information such as modes and sensors to FCP. The research in this paper shows the development of FCPI which is integrated into 
the previously developed FCLs model. The development process adopts V model method which starts from the definition of 
requirements, design of software, and verification by means of EFCS simulation. The results are the refinement of EFCS 
architecture and FCPI is developed for autopilot functions such as airspeed, heading, altitude, and vertical speed.  

INTRODUCTION 

Electronic Flight Control System (EFCS) is developed for LAPAN Surveillance Aircraft (LSA) – 02 to perform 
UAV Technologies. LSA – 02 uses a high aspect ratio light utility aircraft namely STEMME ES-15 which is 
manufactured in Germany shown as in FIGURE 1. The EFCS is then supplemented to the basic aircraft and transforms 
the conventional mechanically controlled aircraft into an automatically controlled aircraft. Maneuvers performed 
during the EFCS mode is realized by using Flight Control Laws (FCLs)1–3. FCLs software is planted inside Flight 
Control Computer (FCC). It receives signals from Flight Control Panel (FCP) and sensor and produces signals to 
actuators and FCP4,5. FCP is operated mainly by a test pilot on board. FCP can be optionally operated from the ground 
control station. The basic function developed for FCP is autopilot mode which consists of airspeed control, heading 
control, altitude control, and vertical speed control6–8. FCP is placed on the avionics panel in front of the pilot and is 
the main interface between the test pilot and EFCS of the LSA-02 Technology Demonstrator.  

The FCP is developed inside research cooperation between LAPAN Indonesia and TU Berlin Germany by
LAPAN’s requirements. The device displays information on the 7" TFT display which is protected by the shatterproof 
glass as a safety feature6. The pilot gives inputs through the buttons and knobs which are located surrounding the 
display. FCP has three main functions which are to load and send initialization data to the FCC to be read by FCLs, 
to allow the test pilots to enter data or give commands manually to EFCS, and to display information to the test 
pilots6,8. In the process of FCP giving or getting information from FCLs, there is Flight Control Panel Interface (FCPI) 
which acts as a link between FCP and FCLs.  

The reason of FCPI exists that FCP is designed only as an input-output device which means it is not allowed to be 
equipped with algorithms and functions which are related to aircraft and its flight control system. Therefore, it is 
essential to construct FCPI to realize these algorithms and functions. FCPI plays an important role to interpret signals 
generated from FCP which is formed in CAN communication, to convert and condition those signals to FCLs, and to 
feedback those signals and other information such as modes and sensors returning to FCP. This paper discusses 
research about the development of FCPI by following a development process called V model. The V model represents 
the relationships between each phase of the development life cycle and its associated phase of testing and verification.
This research is performed by stages such as defining the concept and requirements of FCPI, constructing architecture, 
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formulas, and design of FCPI, integrating the FCPI model to its parent models that are EFCS and aircraft, and 
performing FCPI verification with respect to the defined requirements.  

FIGURE 1. STEMME ES-15

The objectives of this research are to develop FCPI in the Model in the Loop (MIL) level and to perform 
verification tests for FCPI design. The development of the FCPI in this paper is focused on implementing defined 
autopilot functions which are airspeed control, heading control, altitude control, vertical speed control, and vertical 
mode select.  

LITERATURE REVIEW 

V Model 

The development process of the FCPI follows the V model9. The left leg of the V shape represents the evolution 
of user requirements into smaller components through the process of decomposition and definition in detailed design. 
On the other hand, the right leg represents the integration and verification of the system components. For the 
development process, the requirements shall be firstly defined, which are derived from the upper level requirements9–

11. Writing the requirements, FCPI design shall have proceeded. Finally, the FCPI codes shall be verified against the
written requirements. The illustration of V model for the development process of FCPI is shown in FIGURE 2.

Coding

FCPI
Definition

Aircraft
Definition

FCPI
Simulation

Aircraft
Simulation

Verification

Verification

FIGURE 2. The V model of FCPI development

The V model consists of the number of development steps such as aircraft and FCPI concepts, requirements, 
specifications definition, FCPI coding, FCPI, and aircraft integration and verification by means of simulations. The 
work of concepts, requirements, and specifications definition has the purpose to arrange preparation prior to design. 
This work may occur to cycle internally and iteratively in each step. Here, the aircraft concept, requirements, and 
specifications are given from an upper level document. Later, the FCPI concept and requirements definition is 
performed. The definition includes, for example, the concept of FCPI software architecture and writing requirements 
of input-output variables.  After that, the process continues to FCPI software block diagram construction, logic and 
equations formulation, and software coding. The next process is to integrate parameters and variables to FCPI software 
and run a verification test. Completing the FCPI simulation, the FCPI model is subsequently integrated into the EFCS 
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model which is connected to the aircraft model. Here, aircraft simulation is conducted to perform final verification 
tests for FCPI development.  

Architecture of EFCS 

EFCS is developed to couple to the aircraft basic mechanical control system. This system is able to take over the 
aircraft control via an electro-mechanical actuation system that moves the basic mechanical control linkages. The 
aircraft maneuver is controlled by FCLs with commands come from the test pilot or optionally from the ground control 
station. EFCS supports automatic flight control mode which is activated by the test pilot when sending input 
commands to EFCS via FCP. The EFCS in automatic control mode can control the aircraft in all axes in longitudinal 
and lateral motions. 

EFCS consists of two main parts which are the Basic Electronic Flight Control System (BEFCS) and Experimental 
System (XS). BEFCS provides the basic control functions which are computed by FCLs. BEFCS provides limited 
authority for XS to run experimental flight mode. BEFCS contains FCP, sensors, FCC, and actuators. XS is an 
additional system that is linked to the BEFCS via FCC. The XS can control aircraft via selected entry points which 
are regulated by FCC to limit XS authority. The XS receives a sensor signal from BEFCS and it is possible to install 
experimental payloads such as experimental sensors, radar, or camera. The XS reliability is not the main goal but to 
perform experimental functions as it is already monitored and controlled by reliable BEFCS. The architecture of EFCS 
is shown in FIGURE 3.

EFCS

BEFCS

FCP

Sensors

FCC

B
A

XS

Actuator
Aircraft

Data Link

Basic Aircraft

Safety
System

FIGURE 3. Architecture of EFCS

Architecture and Concept of FCP 

FCP is the main human-machine interface (HMI) between the test pilot and EFCS of LSA-02 technology 
demonstrator aircraft6. The FCP which is placed on the avionics panel in front of the test pilot has three main functions 
i.e. to load and send initialization data to the FCC to be read by the FCLs, to enable the test pilot to enter data or give
commands manually to the EFCS, and to display information of sensors, modes, and vice versa to the test pilot. The
architecture of FCP and the allocation of buttons and knobs are set in FIGURE 412. The figure shows the names of the
buttons and knobs. The button’s name is stated as “PB” which means push button which is followed by a unique
number. While “R” stands for rotary switch or knobs which is also followed by a unique number12. The FCP provides
in total 29 buttons and 6 rotary switches/knobs. The words in the second and third-row under buttons and knobs names
represent the unique output data every time they are activated by pressing or turning12. The output data is listed in
TABLE 1.
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FIGURE 4. General Architecture of FCP drawn with blue line boxes. Button and Knobs identities are uniquely defined

TABLE 1. List of FCP keyboard data

Name Data (Hexadecimal) Data (Decimal)
Rot1L 0x29 41
Rot1R 0x2a 42
Rot3L 0x25 37
Rot3R 0x26 38
Rot4L 0x27 39
Rot4R 0x28 40
Rot5L 0x21 33
Rot5R 0x22 34
Rot6L 0x23 35
Rot6R 0x24 36
Rot7L 0x1d 29
Rot7R 0x1e 30
PB26 0x19 25
PB27 0x1b 26
PB28 0x1a 27
PB29 0x1c 28
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RESULTS 

Requirements of FCPI 

The requirements definition begins with constructing the concept of EFCS phases which are shown in FIGURE 5.
The EFCS phases occur inside the aircraft phase which contains take-off, climb, cruise, descent, and land. Aircraft 
systems including EFCS are turned on before starting to take-off. Here, EFCS is on but disengage which means the 
aircraft is still in manual flight mode. During this phase, FCC inside EFCS only monitors the aircraft maneuvers 
through EFCS sensors. After the aircraft is in the cruise phase, the test pilot is allowed to engage EFCS which causes 
the aircraft to convert from manual flight mode to electronic flight mode. However, during the EFCS engagement, the 
EFCS only maintains the previous steady flight condition. Right after the test pilot engages FCP and enters commands 
through buttons and knobs on FCP, the EFCS controls the aircraft's motion with respect to given commands. 
Completing the mission, the test pilot is then allowed to disengage FCP and subsequently disengage EFCS which 
returns the aircraft from electronic flight mode to manual flight mode. From there, the pilot can proceed to the next 
aircraft phases which are descent and land. 

EFCS
disengage

EFCS
engage

FCP
engage

FCP
disengage

EFCS
disengage

FIGURE 5. EFCS Phases

After FCP is engaged, the EFCS still maintains the previous steady flight condition. However, the test pilot now 
is able to enter specific commands via FCP. FCP shall show the sensor's measurement through actual value indicators. 
Note that the current developed autopilot mode covers only airspeed, heading, altitude, vertical speed, and vertical 
mode. Therefore, there are four actual value indicators plus a vertical mode indicator. In addition, the command value 
indicators placed under the corresponding actual value indicators show the commanded values taken from previous 
steady flight condition. The test pilot shall examine the vertical mode indicator and push the vertical mode button to 
go to the next vertical mode. The altitude control and the vertical speed control cannot run simultaneously so that it 
needs to be selected which control needs to execute via the vertical mode button. The default vertical mode is altitude 
and the other mode is vertical speed. Subsequently, the test pilot shall turn the knobs for changing desired commands 
for airspeed, heading, and altitude or vertical speed. By turning the knobs, the test pilot selects the precommand value. 
To enable an efficient input method, knobs for heading and altitude are equipped with coarse and fine-tunes. The pre 
command values are displayed in command value indicators. The pre command value limiters are activated when 
knobs are turned continuously to excess permitted commands. When the displayed precommand values are matched 
with the desired values, the test pilots shall activate these precommand values to command values by pressing the 
knobs. 

,,,, cccc hhV

,,,, hhV
FCP FCPI FCLs

FCC

RKI

TMI

FIGURE 6. Block diagram of FCP and FCC

FCP is merely an input-output device that infers that there are no algorithms and functions related to aircraft and 
its flight control system exist. FCPI is developed to cover these algorithms and functions so that FCC is able to interpret 
precommand values set up when knobs are turned, to detect command values when knobs and vertical mode button 
are pressed. In addition, FCC can limit excessive inputs from knobs when they are violating predefined commands 
protection. Furthermore, FCC is able to send information of sensors measurement and commands to FCP. On the other 
hand, the commands activated via knobs are transmitted by FCPI to FCLs so that the FCLs can realize the aircraft 
maneuvers based on given commands. The working mechanism of FCP and FCC where FCPI and FCLs are developed 
is displayed in FIGURE 6.
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FCPI acts as a control link between FCP and FCLs. FCPI shall be divided in two functionality components which 
are commands receiver and display transmitter which is called FCPI Command (FCPIC) and FCPI Display (FCPID) 
respectively. FCPIC processes physical interpretation for turning knobs and pressing knobs and vertical mode button 
sets protection limits for precommand inputs, detects commands activation from knobs pressing, and transmits these 
commands to FCLs. FCPID gathers preset precommand inputs values and current sensors information and converts 
them into American Standard Code for Information Interchange (ASCII) signals type prior to transmitting these 
signals to FCP. FCPI shall be equipped with parameters of push buttons and knobs unique identification number which 
is called as Receive Key Identification (RKI). 

FCPI consists of some numbers of functions such as read function, limit function, activate function, and ASCII 
conversion function. Read function shall be able to determine if a knob is turned clockwise or counter clockwise for 
how many steps which represent precommand increment, to obtain precommand reference which is initially obtained 
from previous steady flight condition, and to compute final real precommand value. In addition read function shall be 
able to detect if the vertical mode button is pressed, to cycle vertical mode value when the button is pressed again, and 
transmit vertical mode input to FCLs. The limit function shall be able to limit inputted precommand value. Therefore, 
the limit function is provided with unique permissible ranges command values for airspeed, heading, altitude, and 
vertical speed. Activate function shall be able to detect if knobs and vertical mode buttons are pressed. Each command 
has its unique activation RKI. Receiving the activation RKI, the activate function takes the last given precommand 
value to become a command value and transmit it to FCLs. ASCII conversion function has purpose to convert 
precommand values including the vertical mode and associated sensor values from decimal signal type to ASCII signal 
type. During its process, there may be also unit conversions such as kilometer an hour from meter per second and 
degree from radian. The FCP is designed to receive ASCII signal type to be displayed on the FCP screen as decimal 
signal type. Here, ASCII conversion function transmits 6 bytes of signals which are called Transmit Message 
Identification (TMI) for each information of precommand values and sensor values. The ASCII conversion unit also 
ensures that each 6 information goes to the assigned actual value, command value, or vertical mode indicators. 

After constructing the concept of FCPI contained architecture and functionalities and also deriving from upper-
level requirements, the FCPI requirements are written carefully and its summary is listed in TABLE 2.

TABLE 2. Requirements of FCPI
No. Title Description 
1. FCPI component FCPI Command (FCPIC) and FCPI Display (FCPID)
2. FCPIC part Airspeed, heading, altitude, vertical speed, vertical mode interface command
3. FCPID part Precommand input and sensor interface 
4. Interface command item Read, limit, activate functions
5. Interface display item ASCII convert functions
6. Button and knobs selection Button for vertical mode

Knobs for airspeed and vertical speed
Double Knobs for heading and altitude

7. Changing input values Turn left (counter clockwise) to decrease and turn right (clockwise) to increase. 
8. Value changes increment Airspeed , fine heading , coarse heading , fine altitude 

, coarse altitude , vertical speed .
9. Vertical mode Altitude mode = 1, Vertical speed mode = 2. 
10. Read Function Identify RKI and increment based on trim point reference 
11. Limit function Airspeed precommand ( ), Heading precommand (

), Altitude precommand ( ), Vertical
speed precommand ( )

12. Activate Function Activate precommand to command input.
13. Actual value Display sensor value of Airspeed , heading , altitude , and vertical

speed 
14. Command value Display precommand for Airspeed , heading , altitude , and

vertical speed 
15. Vertical mode value Display status for vertical mode value
16. Unit converter Convert to SI unit for computation of logics and formulas. 
17. ASCII converter Convert to ASCII for TMI 
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Design of FCPI 

Based on written requirements, FCPI block diagram is constructed. Signal flows two way between FCP and FCC 
but here, it is graphically separated so that the signal flows as only in one direction from left to right. FCP is then 
divided into FCP Command (FCPC) and FCP Display (FCPD). FCPI is also separated based on its functionality, i.e. 
FCPIC and FCPID. FCPIC receives RKI signals to FCPC while FCPID transmits TMI signals to FCPD. FCPIC 
consists of read function, limit function, and activate function while FCPID comprises ASCII convert function. The 
block diagram of FCPI is shown in FIGURE 7. 

FCP
COMMAND

FCPI COMMAND

Read Limit Activate
ASCII

Convert

FCPI DISPLAY

FCP
DISPLAYFCLs

FIGURE 7. Block diagram of FCPI which is divided to FCPI Command (FCPIC) and FCPI Display (FCPID)

Read Function 

Read function basically recognizes RKI for specific precommand either airspeed, heading, altitude, vertical speed 
or vertical mode commands. Airspeed and vertical speed consist of RKI for increase by turning clockwise knob, 
decrease by turning counterclockwise knob, and activate by pressing knob. Heading and altitude RKI have similar 
behavior but they are extended to be coarse increase by turning clockwise outer knob, fine increase by turning 
clockwise inner knob, coarse decrease turning counterclockwise outer knob, fine decrease by turning 
counterclockwise inner knob, and activate by pressing the knob. Vertical mode only consists of RKI for increase. 
However, since there are only two values for vertical mode, i.e. 1 for altitude which is set as default and 2 for vertical 
speed then pressing vertical mode button will set vertical mode from 1 to 2 and pressing the button again will cycle 
the vertical mode from 2 to 1. There is no activate RKI for vertical mode which means every time vertical mode button 
is pressed the vertical mode changes from one altitude control to vertical speed control or other way around. Every 
time increase or decrease RKI for specific precommand is pressed, the read function counts and saves number of steps 
resulted from turning the knob. In addition, the read function shall get the reference precommand which is obtained 
from the previous steady flight conditions with respect to the specific precommand. Without current reference, read 
function will always start from zero which creates faulty maneuvers especially for airspeed and altitude. The block 
diagram of read function is depicted in FIGURE 8.

cipXRead 
Function

RKI

FIGURE 8. Read Function 

Read functions for airspeed and vertical speed contains algorithms which can be written as follows 
(1)

with , index “cip, pr “ stands for previous precommand input, index “cir” stands for command input reference,
and index “cip” stands for precommand input. Note that in right hand side is obtained from sensor measurement
at , and save it to memory to be maintained for following iteration time. When new  is yielded, the right hand
side  is updated in the next iteration time. In addition, the read functions for heading and altitude contains slightly
more complicated algorithms since they have coarse and fine decrease and increase. The algorithm can be seen in 
following 
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(2)

with . Index “cip, pr“ stands for previous precommand input, index “cir” stands for command input reference, 
index “cip,cr” stands for coarse precommand input, index “cip,fn” stands for fine precommand input, and index “cip” 
stands for precommand input. Note that in right hand side is obtained from sensor measurement at , and save it
to memory to be maintained for following iteration time. When new  is yielded, the right hand side  is updated
in the next iteration time. Finally, the read function for vertical mode is more simply and is written to be following. 

(3)

with Mod(VER) stands for vertical mode, index “pr” stands for previous.

Limit Function 

Limit function checks if incoming precommand does not exceed boundaries of permissible precommand values.
Violating the maximum permissible precommand value, the given precommand shall be set at maximum limit while 
in case of exceeding minimum permissible precommand value, the given precommand shall be set at minimum limit. 
Block diagram for limit function is shown as FIGURE 9 and logic for limit function is written in equation 4. 

cipX Limit 
Function

cipX

FIGURE 9. Limit Function

(4)

with . Index “cip” stands for precommand input, index “cip,mn” stands for minimum precommand
input, and index “cip,mx” stands for maximum precommand input. For heading command limit function, it has 
purpose to cycle command from zero to less than 2  or  which can be realized by implementing following 
equation. 

(5)

with index “cip,o” stands for output precommand input and index “cip,i" stands for input precommand input.
Vertical mode limit function is realized by cycle the previous RKI to the next RKI, i.e. from 1 to 2 and from 2 to 1. 
The algorithm is given to be following. 

(6)
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Activate Function 

Activate function simply activates specific precommand input into command input. This function is available only to 
airspeed, heading, altitude, and vertical speed. The vertical mode does not need to possess activate function as selection 
to vertical mode shall go the next value of vertical mode. The activate function is depicted in FIGURE 10. 

Activate
Function

)( XActvRKI

FIGURE 10. Activate Function

Activate function is defined in the following equation. 

(7)

with 

Verification of FCPI 

The verification of FCPI is conducted to evaluate if the requirements of the FCPI are correctly implemented. 
Verification is done both in architecture and functionality. The architecture consists of block diagrams which comprise 
functions such as read, limiter, activate and ASCII converter. The implementation of architecture and functions is 
done by means of MATLAB/Simulink. 

Architecture 

The FCPI consists of two components, i.e. FCPIC and FCPID which have separate purpose to receive RKI and to 
transmit TMI respectively. The implementation of FCPIC and FCPID is depicted in FIGURE 11 and FIGURE 12. 

FIGURE 11. FCPIC implementation in Simulink model 

. 
FIGURE 12. FCPID implementation in Simulink model 
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Following architecture is availability of FCPIC part which consists of airspeed, heading, altitude, vertical speed, 
and vertical mode interface command. On the other hand, FCPID part contains precommand input and sensor interface. 
The FCPIC and FCPID parts verification is displayed in FIGURE 13 and FIGURE 14. 

FIGURE 13. FCPIC part implementation in Simulink model. 

FIGURE 14. FCPID part implementation in Simulink model. 

In each airspeed, heading, altitude, vertical speed interface commands shall be constructed with read, limit and 
activate functions while for the vertical mode shall only consists of read and limit function. Units for airspeed and 
heading prior entering read function are converted to meter per second and radian respectively. The implementation 
for these functions availability are depicted in FIGURE 15 and FIGURE 16. 

FIGURE 15. Example for read, limit and active functions for airspeed command 
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FIGURE 16. Read and limit functions for vertical mode command
On the other hand, interface display only possesses ASCII converter both for precommand input and sensor 

interface. Units of precommand input interface for airspeed and heading are converted to kilometer an hour and degree 
respectively. The implementation for ASCII convert function is given in FIGURE 17. 

FIGURE 17. Example of ASCII convert function in airspeed precommand input 

Functions 

The FCPI model consisted of FCPIC and FCPID components is integrated to FCC model inside EFCS model. The 
FCPIC is integrated to input interface of FCC while FCPID is integrated to output interface of FCC. The EFCS is 
connected to aircraft model in order to run aircraft simulation for FCPI functionality verification purpose. The 
integration of FCPI to FCC and the connection between EFCS to aircraft are displayed in FIGURE 18 and FIGURE
19.

FIGURE 18. Integration FCPI to FCC 

FIGURE 19. Connection of EFCS to aircraft 

Prior to functionality verification, tests definition is set up. The tests definition has purpose to plan the verification 
tests in order to examine if FCPI fulfills the written requirements specifically for changing input values, value changes 
increment, vertical mode, read function, limit function, activate function, actual value, command value, and vertical 
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mode value. These requirements have been already stated in TABLE 2. In this paper, the tests definition discussed is 
focused on two tests, i.e. the verification for precommand and verification for vertical mode. 

FIGURE 20. An example verification for actual and command for airspeed 

For the first test, RKI for precommand value is given several times then RKI for activate is sent. An example for 
verification result is given in FIGURE 20. The airspeed knob is turned clockwise for 10 steps from 0 to 20 seconds.
Each steps will produce RKI of 30 which means increment of 1 km/h and 10 steps result to 10 km/h. From FIGURE 
20, it shows that the airspeed precommand input increases from reference of 130 km/h to 140 km/h. This verifies the 
read function is able to identify that airspeed knob is turned clockwise for 10 steps and to get airspeed reference of 
130 km/h from previous steady flight condition. The precommand changes is displayed correctly on command value 
indicator. In addition, the precommand input does not violate limit function hence the input is kept displayed its 
designated value. Up until 20 seconds the airspeed response still maintains its reference at 130 km/h which is displayed 
in on actual value indicator. This verifies that precommand input has not activated and only is displayed in command 
value. At 25 seconds, the airspeed knob is pressed and this generates RKI of 28 which is plotted in Fig. 20.
Subsequently, the activate function detects the RKI for airspeed command activate, sets the final airspeed precommand 
input of 140 km/h to be airspeed command of 140 km/h, and transmits to FCLs. The result shows that the airspeed 
responses by following the given command. The airspeed response is depicted on actual value indicator. From the 
first test result, it can be verified that requirements for changing input values, value change increment, read function, 
limit function, activate function, actual value, and command value are complied. 

The second test is to verify vertical mode functionality. For this test, vertical mode is selected at default value. 
Then, RKI for altitude precommand and activate are given. Subsequently, RKI for vertical speed precommand and 
activate are inputted. Later RKI for vertical mode is excited. An example of verification result is given in FIGURE 
21. The altitude fine knob is turned clockwise for 5 steps from 0 to 10 seconds. Each steps will produce RKI of 40
which means increment of 10 m and 5 steps result in 50 m. Therefore, the altitude goes from 1000 m to 1050 m. At
13 seconds, RKI of 26 for altitude activate is sent. Later, RKI of 41 for vertical speed precommand is given twice.
This means the vertical speed knob is turned clockwise for 2 steps from 20 to 22 seconds which results vertical speed
is given precommand from 0 to -1 meter per seconds.  At 30 seconds, RKI of 25 for vertical speed activate is sent.
Then, RKI of 14 for vertical mode is given at 60 seconds. The second row of FIGURE 21 shows vertical mode select
which is displayed on vertical mode value indicator. This means RKI of 14 sent at 60 seconds is verified from vertical
mode value. The third row of FIGURE 21 shows altitude precommand from 0 to 10 seconds which is displayed on
altitude command value indicator. This verifies the first ten seconds RKI input shown in the first row of this figure.
Then, at 13 seconds, altitude command is activated and altitude responses following the altitude command. The
altitude response is displayed on altitude actual value indicator. The response of altitude complies selected vertical
mode of 1 which is activated until 60 seconds. This verifies that the current vertical mode value only activates altitude
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control. It is also supported from the given vertical speed precommand at 20 seconds and vertical speed activate at 30 
seconds. Those vertical speed control input does not affect the altitude response because the vertical mode is still at 
altitude mode. Only after vertical mode selected to value of 2 or vertical speed mode, the vertical speed control is 
active and it can be seen that the vertical speed response follows the vertical speed command and also altitude response 
no longer holds the current value but drops as consequence of negative vertical speed command. In conclusion, the 
verification test shows compliances especially toward requirement of vertical mode. In addition, other requirements 
such as changing input values, value changes increment, read function, limit function, activate function, actual value, 
command value, and vertical mode value are complied.  

FIGURE 21. An example verification for vertical mode of altitude and vertical speed 

CONCLUSIONS 

The development of FCPI in MIL level has been accomplished which are composed from two development phases 
i.e. FCPI concept and requirements definition and FCPI design. The FCPI concept is derived from EFCS phase concept
comprised EFCS and FCP engage – disengage sequence and FCP operational concept. The FCPI requirements are
written with respect to FCPI components, FCPI parts, FCPI items, button and knobs selection, changing input values,
value changes increment, vertical mode, read function, limit function, activate function, actual value, command value,
vertical mode value, unit converter, and ASCII converter. FCPI design is shown from block diagram of FCPIC and
FCPID. In addition, the equations for read function, limit function, and activate function for airspeed, heading, altitude,
vertical speed, and vertical mode have been written.
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The verification tests have been defined and performed. The verification shows that FCPI requirements are 
satisfactorily complied. Verification on architecture such as implementation of FCPIC and FCPID, FCPIC and FCPID 
parts, and availability of read function, limit function, and activate function has been shown. Verification examples 
for precommand, activate, and vertical mode have been thoroughly discussed. The examples verifies requirements 
such as button and knobs selection, changing input values, value changes increment, vertical mode, read function, 
limit function, activate function, actual value, command value, and vertical mode value. 
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