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Abstract 

This paper presents the result of the normal modes analysis of N219 wing that has been done. It is done 

using computation method with stick model for wing structure. A short mathematical review of the normal mode 

analysis is presented in this paper. The analysis is done for two cases of flight, OEW and MTOW normal CG at 

maximum fuel. The results of analysis, natural frequencies and mode shapes, shown here, will be used for the 
dynamic analysis to know the flutter speed of this aircraft. The result shows that for the same frequency input of 

analysis, each two cases has different number of mode shapes, and different frequency in the same mode. 
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1. INTRODUCTION 
Normal mode analysis is a part of aeroelastic analysis which will used for the dynamic analysis 

[1]. Aeroelasticity is the study of static and dynamic behavior of structural elements in a flowing fluid 

[2]. Aeroelasticity in aerospace engineering is chiefly concerned with the interaction between the 

deformation of an elastic structure in an airstream and the resulting aerodynamic force [2]. Several years 
ago, Collar suggested that aeroelasticity could be use-fully visualized as forming a triangle of 

disciplines, dynamics, solid mechanics (elasticity) and (unsteady) aerodynamics. Aeroelasticity is 

concerned with those physical phenomena which involve significant mutual interaction among inertial, 
elastic and aero-dynamic forces. Other important technical fields can be identified by pairing the several 

points of the triangle. For example [3], 

 Stability and control (flight mechanics) = dynamics + aerodynamics 

 Structural vibrations (structural dynamic) = dynamics + solid mechanics 

 Static aeroelasticity = steady flow aerodynamics + solid mechanics 

 

Figure 1-1 Schematic of the field of aeroelasticity [2] 

 

During designing, manufacturing and examination of an aircraft prototype it is required to 

confirm that the aircraft is free from flutter in the range of the designed speed [1]. The flutter analysis 

and the flight test are used to confirm it [1]. Modeling phase is became a vital part to flutter analysis 
process due to the mode shapes and natural frequencies data that obtained from normal mode analysis 

in modeling phase [4]. The process for determine mode shapes and natural frequency can be done using 

free vibration equation which is contain stiffness and mass [4]. To find stiffness we could do a certain 

way, one of the way is find the cross-section inertia (Ix,Iy and J) and multiply with a certain modulus 
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elasticity (E) [4]. The stiffness are use to be input for normal mode analysis before engineering do the 
flutter analysis [4]. 

The usual first step in performing a dynamic analysis is determining the natural frequencies and 

mode shapes of the structure with damping neglected. These results characterize the basic dynamic 
behavior of the structure and are an indication of how the structure will respond to dynamic loading [5]. 

 

 

 
Figure 1-2 Input schematic of the dynamic analysis [6] 

 

1.1. Natural Frequencies 

The natural frequencies of a structure are the frequencies at which the structure naturally tends 

to vibrate if it is subjected to a disturbance. For example, the strings of a piano are each tuned to vibrate 

at a specific frequency. Some alternate terms for the natural frequency are characteristic frequency, 

fundamental frequency, resonance frequency, and normal frequency [5]. 
 

1.2. Mode Shape 
The deformed shape of the structure at a specific natural frequency of vibration is termed its 

normal mode of vibration. Some other terms used to describe the normal mode are mode shape, 

characteristic shape, eigenvector and fundamental shape. Each mode shape is associated with a specific 

natural frequency [5]. 
Natural frequencies and mode shapes are functions of the structural properties and boundary 

conditions. A cantilever beam has a set of natural frequencies and associated mode shapes (Figure 1-2). 

If the structural properties change, the natural frequencies change, but the mode shapes may not 
necessarily change. For example, if the elastic modulus of the cantilever beam is changed, the natural 

frequencies change but the mode shapes remain the same. If the boundary conditions change, then the 

natural frequencies and mode shapes both change. For example, if the cantilever beam is changed so 

that it is pinned at both ends, the natural frequencies and mode shapes change (see Figure 1-3) [5]. 
 

(a) (b) 
Figure 3. (a) The First Four Mode Shapes of a Cantilever Beam [5] 

(b) The First Four Mode Shapes of a Simply Supported Beam [5] 
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This paper use normal mode analysis to determine the vibration characteristics (natural 
frequencies and mode shapes) of N219 wing structure B-11 configuration. The natural frequencies and 

mode shapes are important parameters in the design of a structure for dynamic loading conditions [8].  

There are many reasons to compute the natural frequencies and mode shapes of a structure. One reason 

is to assess the dynamic interaction between a component and its supporting structure. For example, if 
a rotating machine, such as an air conditioner fan, is to be installed on the roof of a building, it is  

necessary to determine if the operating frequency of the rotating fan is close to one of the natural 

frequencies of the building. If the frequencies are close, the operation of the fan may lead to structural 
damage or failure . 

 

2. ANALYSIS METHOD 

Procedure analysis of wing normal mode is shown as follow. 

 

Figure 2-1 Procedure Analysis 

 

2.1. Cross-section inertia 

Cross-section inertia can be measured from 3D configuration model of wing by simplify the 

model which consist of skin, spar, ribs, and stringer. It is determined from 2D cross-section using 

computational program then we get Ixx, Iyy, J, and centroid values. 

 
Figure 2-2 Cross-section of wing 
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2.2. Wing Stiffness (Rigidity) 

For isotropic beams, calculation of the bending rigidity is a straight forward integration over the 

cross section, given by [7] 
 

 

𝐸𝐼 = ∬𝐴 𝐸𝑦2 𝑑𝐴 (1) 
 

where E is the Young’s modulus. When the beam is homogeneous the Young’s modulus may be moved 
outside the integration so that 

 

EI = EI (2) 
where I is the cross-sectional area moment of inertia about the z axis for a particular cross section. Here, 

the origin of the y and z axes is at the sectional centroid 7). 

The torsional rigidity, denoted by GJ, is taken as given and may vary with x. For homogeneous 
and isotropic beams, 

GJ = GJ (3) 
where G denotes the shear modulus and J is a constant that depends only on the geometry of the cross 

section. To be uncoupled from bending and other types of deformation, the x axis must be along the 
elastic axis and also must coincide with the locus of cross-sectional mass centroids. For isotropic beams, 

the elastic axis is along the locus of cross-sectional shear centers 7). 

Fig. 2-3 shows bending and torsional stiffness of the wing in certain distance. Horizontal axis 

shows the distance of cross-section from the root. 

 

 

 

 

 

 

 

 

 
 

Figure 2-3 Stiffness of wing 
 

2.3. Mathematical Overview of Normal Modes Analysis 

The system of differential equation governing the elastic deformation of an airplane can be written as 
[𝑀]𝑢̈  (𝑡) + [𝐶]𝑢̈  (𝑡) + [𝐾]𝑢̈(𝑡) = 𝐹(𝑡) 

 

 
(4) 

where [M] is the mass matrix, [C] is the damping matrix, [K] is stiffness matrix, F(t) is the vector of 

external forces on the structure generated by the gust field, 𝑢̈  (𝑡) is the vector of acceleration, 𝑢̈  (𝑡) is the 
vector of velocity, and u(t) is the vector of elasticdisplacements on the structure 12). Eq. (3) for unforced 
motion is given by [7] 

[𝑀]𝑢̈  (𝑡) + [𝐶]  (𝑡) + [𝐾]𝑢̈(𝑡) = 0 (5) 
 

The solution of the equation of motion for natural frequencies and normal modes requires a 

special reduced form of the equation of motion 5). If there is no damping and no applied loading, the 

equation of motion in matrix form reduces to 

[𝑀]{𝑢̈  } + [𝑢̈] = 0 (6) 
 

where [M] is the mass matrix, [K] is stiffness matrix, {𝑢̈  } is the acceleration, and [𝑢̈] is the displacement 
5). This is the equation of motion for undamped free vibration . To solve Eq. (5) assume a harmonic 

solution of the form 

{𝑢̈} = {ɸ}i𝑛𝜔𝑡 (7) 
 

where {ɸ} is the eigenvector or mode shape and 𝜔 is the circular natural frequency 5). If differentiation 
of the assumed harmonic solutionis performed and substituted into the equation of motion, the following 

is obtained [5]: 
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−𝜔2[𝑀]{ɸ} 𝑠i𝑛𝜔𝑡 + [𝐾]{ɸ}𝑠i𝑛𝜔𝑡 = 0 
which after simplifying becomes 

(8) 

([𝐾] − 𝜔2[𝑀]){ɸ} = 0 (9) 

This equation is called the eigenequation, which isa set of homogeneous algebraic equations for 

the components of the eigenvector and forms the basis for the eigenvalue problem [5]. An eigenvalue 
problem 
is a specific equation form that has many applications in linear matrix algebra. The basic form of an 
eigenvalue problem is 

[𝐴 − 𝜆𝐼]𝑥 = 0 (10) 

where A is the square matrix, 𝜆 is the eigenvalues, I is the identity matrix, and x is the eigenvector [5]. 

In structural analysis, the representations of stiffness and mass in the eigenequation result in the physical 

representations of natural frequencies and mode shapes. Therefore, the eigenequation is written in terms 

of 𝐾, 𝜔, and 𝑀 as shown in Eq. (8) with 𝜔2 = 𝜆 [5]. 
There are two possible solution forms for Eq. (8) [5]: 

a. If det ([𝐾] − 𝜔2[𝑀]) ≠ 0, the only possible solution is 

{ɸ} = 0 
(11) 

This is the trivial solution, which does not provide any valuable information from a physical 
point of view, since it represents the case of no motion. (“det” denotes the determinant of a 

matrix.) 

b. If det ([𝐾] − 𝜔2[𝑀]) = 0, then a non-trivial solution ({ɸ} ≠ 0) is obtained for 

([𝐾] − 𝜔2[𝑀]){ɸ} = 0 
From a structural engineering point of view, the general mathematical eigenvalue problem 
reduces to one of solving the equation of the form 

det ([𝐾] − 𝜔2[𝑀]) = 0 
atau 

det ([𝐾] − 𝜆[𝑀]) = 0 
dimana 𝜆 = 𝜔2 

(12) 

 
(13) 

The determinant is zero only at a set of discrete eigenvalues λi or ω 2 . There is an eigenvector 
{ɸi} which satisfies and corresponds to each eigenvalue. Therefore, can be rewritten as5) 

([𝐾] − 𝜔2[𝑀]){ɸi} = 0 i = 1, 2, 3,……… (14) 
Each eigenvalue and eigenvector define a free vibration mode of the structure. The i-th 

eigenvalue λi is related to the i-th natural frequency as follows: 
ƒ = 

𝜔i
 

(15) 

i 2𝜋 
 

where fi is the i-th natural frequency and ωi is √𝜆i 5). For undamped natural fequency 
 

 

𝜔 = √𝑘⁄𝑚 
 

Eq. (16) 

where m is the mass, and k is the stiffness 11). The number of possible eigenvalues and eigenvectors is 

equal to the number of degrees-of-freedom that have mass or the number of dynamic degrees-of-freedom 

[5]. 

 

2.4. Structural Model of Wing 

Structural model in normal modes analysis can be done with several methods, which generally 

used are full FEM, hybrid, and stick model [6]. In this paper, structural model using stick model method. 

 
Figure 2-4 Structural model of aircraft with full FEM model [6] 
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Figure 2-5 Structural model of aircraft with hybrid model 

[6] 
Figure 2-6 Structural model of aircraft with stick model 

[6] 
 

An airplane with slender parts with rigid cross-section could be modeled by a number of beams placed 
along reference axis of the structure. Reference axis is elastic axis of the structure. Elastic axis is a number of 

shear center position of cross section structure. In other word, stick model is simplify of full FEM structural 

model, so its accuracy of analysis result doesn’t equal to full FEM. Simplifying model is needed in design 
process, because a more simple model, a less time needed to analyze. 

Structural model of wing including stiffness, shell, and mass can be seen in fig. 2-7 and fig. 2-8 below. 
 

Figure 2-7 Structural model of aircraft wing 
 

Figure 2-8 Back view of wing model 

 

2.5. Normal Mode Analysis 

The mathematical overview for normal modes analysis has been explained in part 2.3. This paper used 
MSC NASTRAN for computational normal modes analysis. It has been done for two cases of flight, OEW 

(Operating Empty Weight) and MTOW (Maximum Take Off Weight) normal CG at maximum fuel. The 

frequency input for this analysis is stated of 50 Hz. Structural model of wing for OEW can be seen at fig. 2-7, 

for MTOW normal CG at maximum fuel can be seen at fig. 2-9 below. 

 
Figure 2-9 Structural model of wing for MTOW normal CG at maximum fuel 
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3. RESULT AND DISCUSSION 

3.1. Mode Shapes 

The first eight mode shapes of wing at OEW can be seen at fig. 3-1 below. 
 

 
Mode 1 
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Mode 3 

 

 
Mode 4 

 

 
Mode 5 
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Mode 8 

Figure 3-1 Mode shape of wing at OEW case 

 

The mode shapes of wing from fig. 3-1 are : 

a) Vertical bending (Mode 1) 

b) Inplane bending (Mode 2) 
c) Torsion (Mode 3) 
d) Second vertical bending (Mode 4) 

e) Second inplane bending (Mode 5) 

f) Second torsion (Mode 6) 
g) Third vertical bending (Mode 7) 
h) Third torsion (Mode 8) 
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The first nine mode shapes of wing at MTOW normal CG at maximum fuel can be seen at fig. 3-2 below. 
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Figure 3-2 Mode shape of wing at MTOW normal CG at maximum fuel case 

 

The mode shapes of wing from fig. 3-2 are : 

a) Vertical bending (mode 1) 
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b) Inplane bending (mode 2) 

c) Torsion (mode 3) 

d) Second vertical bending (mode 4) 

e) Second inplane bending (mode 5) 
f) Third vertical bending (mode 6) 

g) Vertical bending (mode 7) 

h) Second torsion (mode 8) 
i) Third inplane bending (mode 9) 

 

3.2. Natural Frequency 

Each case of flight have several mode shapes with different natural frequencies. Table 3-1 shows the 

natural frequencies of wing at OEW and MTOW at maximum fuel cases which have been analyzed. 
 

Table 3-1 Natural Frequencies at each Mode Shape of Wing 

 

MODE 
Natural Frequency 

OEW MTOW-N CG AT MF 

1 4.168 2.781 

2 8.525 5.724 

3 10.380 9.762 

4 19.017 13.440 

5 28.693 23.212 

6 34.531 26.577 

7 42.808 32.465 

8 45.781 45.361 

9  46.912 

 
 

Table 3-1 shows that the natural frequency at the same mode shape different for each case. Greater 

mass have lower frequency at the same mode and vice versa. It is appropriate to the equation of natural 
frequency at Eq. (16). It shows that natural frequency is equal to stiffness divided by mass, it means that 

structure with the same stiffness would has lower frequency if the mass greater. 

 

4. CONCLUSION 

Normal modes analysis of wing in this paper shows that aircraft wing have eight mode shape with 

different natural frequency for each mode at OEW case and nine mode shape with different natural frequency 

for each mode at MTOW at maximum fuel. The results of the normal mode analysis for the N219 wing will 
be used for the flutter analysis. 
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