DESIGN AND INTEGRATION TEST OF PILOT SCALE PRODUCTION OF HTPB BY CONTINUOUS PROCESS*

Heri Budi Wibowo¹⁾, Lee Suuk²⁾

¹⁾Rocket Technology Center, National Aeronautics and Space Institute - LAPAN

²⁾Reaction Eng. Co. Ltd, Korea

<u>heribw@gmail..com</u>

Abstract

This paper is adesign f a reactor HTPB pilot scale manufacturing process. HTPB designed products have the characteristics of an average molecular weight of 2500-5000 g/mol, the dominant structure of 1,4 -HTPB, with a production capacity of 2 tons per year. Process HTPB production mechanism using free radical polymerization method with hydrogen peroxide catalyst and solvent alcohol.

Design is calculated base on production capacity of 2 tons per year and 40 % conversion. The process principle is:raw materials but addiene is fed into the reactor at a temperature of 180 °C and a pressure of 300 psi. H_2O_2 catalyst material introduced into the reactor with a flow rate of 0-100 mL per minute at a temperature of 170 °C. Technical ethanol solvent fed to the reactor at a flow rate 0-100 mL per minute at a temperature of 180 °C and a pressure of 300 psi. The reactor type is a reactor pipe flow reactor. Reaction products from the reactor is then cooled and separated from other solvents by solvent extraction. But addiene reresidue and ethanol is separated from the products by distillation, and then fed back into the reactor.

Design has acquired production equipment systems that support continuous HTPB. Simulation results indicate that the program HYSIS fluid flow every pipe in accordance with the desired and demonstrate appropriate products. Results of testing equipment that has been developed and integrated show that HTPB can be produced with a capacity of 2 tons per year and it worked fine. HTPB test results showed that the average molecular weight of 2500-5000 g/mol with the dominant structure is 1,4-HTPB (60%). Catalyst reacts completely exhausted.

Key Words: HTPB, polybutadiene`, butadiene, propellant

1. Introduction

Space agency in accordance with the strategic plan, that mastery of rocket technology is intended to develop the ability to launch the rocket in accordance charge of the mission, both civilian mission and defense security missions. Rocket technology needed to master a great independency both in structure, electronics, as well as providing for the transfer of technology booster rocket motor areas are very difficult to obtain from developed countries.

Based on the mission, the rocket carrying the satellite can be used for various purposes, Sonda payload to study the characteristics of the air, and took charge of the defense and security interests. Rocket development began to get a place for the benefit of the launching of satellites orbiting satellite based development of rocket RX-550 rocket motor to deliver nano satellites into low orbit. RX-550 rocket was developed with a target altitude of 100 km using a diameter 550 mm, length 6000 mm,and HTPB composite solid propellant types. Self-sufficiency in the supply of propellant is important because it can overcome the propellant material procurement difficulties that cannot be continuous from the overseas manufacturers. As a result of propellant raw materials obtained from different manufacturers, the quality and characteristics of different propellant rocket complicate the design with the same characteristics (standard).

Composite solid propellant is shaped solid propellant consisting of granular oxidizer and additives are dispersed in a polymer matrix. Composite propellant base HTPB is being developed with the use of propellant oxidizer ammonium perchlorate (AP), HTPB binder material (*Hydroxy Terminated polybutadiene*) and the additive primary aluminum (Al). To get a good propellant formulations, the composition of which can be used is 70-75 % AP, HTPB 10-20 %, Al 5-15 %, and 0-5 % other additives.

Based on map material needs for research and development propellant rocket LAPAN, where it takes 10 tons of propellant per year, then the purpose of raw materials Ap is 10 tons per year, HTPB 2 tons per year, and aluminum is 1 ton per year. Ap and HTPB materials are strategic material because it is only used for rocket propellant. Aluminum materials are readily available as it is also widely used materials industry. The expected result is the availability of HTPB production capacity of 2 tons per year (PILOT scale). HTPB desired is the specifications of fuel binder HTPB propellant and lasts continuously for HTPB guarantee results every time the same process and quality standards.

Materials binder HTPB propellant fuel specifications have requirements average molecular weight of 2000-5000 gr/mol, the viscosity of 500cp, the main structure of cis 1, 4-HTPB (minimum 30 %). Based on existing publications, HTPB materials with the main structure of cis 1, 4 polymerization of butadiene can be made by using a metal catalyst buthyl lithium or lithium (Wibowo, 2004). Buthyl lithium materials are chemicals that require considerable handling complex that is not the top choice. The main difficulty in making HTPB research is that the reaction must be free of air and very high purity butadiene. To get HTPB with the dominant structure of cis - 1, 4-HTPB and the average molecular weight of 2800, it is necessary to study the manufacture of HTPB with variable catalyst concentration, butadiene concentration, operation temperature and pressure. If the structure and molecular weight HTPB as a function of catalyst, butadiene gas concentration, operating temperature and pressure is obtained, by planning HTPB pilot scale manufacturing. The final results in the form of pilot scale equipment manufacturing HTPB (200 kg/year) to meet the needs of LAPAN.

HTPB material is a material that is not commercially available, so the acquisition is difficult, especially associated with the military industry. Therefore it is necessary to be able to make yourself so HTPB propellant composite primary purposes of solid materials can be satisfied yourself. The propellant composition is tailored based on the reference of the mechanical properties of solid propellant as seen in Table 1.

Composition	TS (kgcm ⁻¹)	E (%)	hardness	Reference
HTPB/TDI/TM R=0,8	IP 1,2-8,9	129-30		Manjari et.al.(1994)
HTPB:TDI, R=	1 4-16	90-1080	4-16	Jain et.al. (1993)
Polisiloksan	2,4-9	65-100		Agrawal et.al.(1998)
HTPB: TDI MDI HMDI IPDI		-51,9 27	25-50 -58,4 -55,2 -43,7	Gupta et.al. (1997)
HTPB:TDI MDI HMDI IPDI	15,3 16,3 14,5 14,6	123 100,5 74,3 153,0	62 70 68 54,7	Gupta et.al. (1995)
Glisidil asida	4-10	78-90		Duncan (1995)
HTPB-TDI HTPB-IPDI Solithane	4 – 10 4 – 7 6–15	85–400 100-300 75-350		LAPAN (2000)

Table 1. Mechanical properties of polyurethane for solid propellant ever used

2. Theory

2.1. Need of HTPB

HTPB - making technology in the lab can be done by using a batch reactor capacity of 1 L using radical methods with hydrogen peroxide catalyst. Once the process is obtained HTPB 100 mL. To meet the needs of larger HTPB can be upgraded to the PILOT scale (scale above 1 tonne per year). Data covering the design and type of raw material composition, operating conditions, aspect reaski kinetics, and analysis of all the results have been obtained.

Because the process of HTPB has high sensitivity results in the presence of a catalyst composition, operating conditions and reaction time, the results of each does not have the same standard characteristics. For further processing, it is necessary the systems with continuous system, to guarantee standardization product obtained. The research base has a production capacity of 1 ton per year. Types of reactors that can be used is the pipe flow reactor (Plug Flow Reactor, PFR) or flow stirred tank reactor (Continuous Stirrer Tank Reactor, CSTR).

The reactor can produce the desired fuel quality binder HTPB propellant with a maximum production capacity of 1 ton, effective products 60 %, using a continuous system. HTPB has produced specification: the requirements of the average molecular weight of 2000-5000, the viscosity of 500 cp, the main structure of cis-1,4-HTPB (minimum 40 %), good shape polyurethane with toluene diisocyanate (TDI).

2.2. Electoral Process

To ensure a good HTPB obtained, then the selected free radical polymerization reaction system. The raw materials used are butadiene premises of at least 98 % purity. Free radical reaction system according to the method of (Wibowo, 2009), namely polymerization catalyst with 32 % hydrogen peroxide, 80-95 % solvent ethanol. Catalyst concentration is 5-10 %, solvent 50-60 %, with the minimum conversion of butadiene is 40 %.

HTPB is usually made in industrial scale by radically mechanism using raw material butadiene, hydrogen peroxide catalyst, and alcohol as solvent (Flory, J., 1979). The results Showed that the HTPB can be produced from the polymerization of butadiene with a catalyst 32 % hydrogen peroxide in ethanol solvent at a temperature of 178°C (Wibowo, 2001). To get HTPB with an average molecular weight of 2500-5000 g/mole, it will take 1 hour process time. Theoretically, the formation of HTPB reaction begins with the formation of hydrogen peroxide from the radicals to form a radical butadiene monomer (M*) as shown in equation (1). Furthermore radicals will react with other monomers to form a radical containing butadiene monomer or the lengthier as shown in equation (2) to (4). Polymer growth will stop if the radical iscolliding as shown in equation (5).

$H_2O_2 + M$	>	2MOH*	(1)
MOH* + M	>	M_2OH*	(2)
$M_2OH^* + M$	-	-> M ₃ OH*	(3)
$M_nOH^* + M$	>	$M_{n+1}OH*$	(4)
$M_nOH^* + M_mO$)H*	$>HOM_{n+m}OH$	(5)

3. Simulation and Result

Simulation conducted to determine the fluid flow in each pipe flow and to prove that the flow results according to the desired design. Simulation is designed base on the flow diagram of reactor as seen in figure 1.

Any fluid flow pipes are as follows as seen in figure 2.

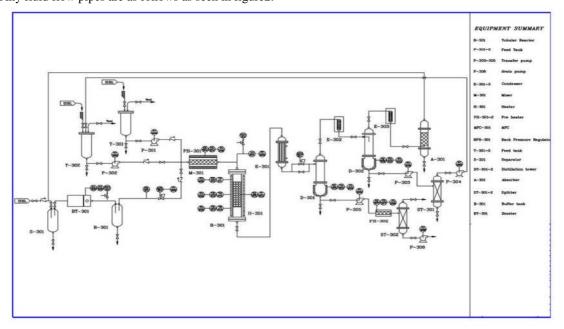


Fig 1. The design of Pilot Scale Reactor System HTPB

1				Case Name:					
3	MYPROTECH LEGENDS Calgary, Alberta			Unit Set:					
4 5	-	··· CANADA		Date/Time:	Date/Time: Wed Feb 29 16:40:14 2012				
6				_					
7°	W	orkbook	Case (Mai	n)					
9				Material Stream	s	Fluid Pkg: A			
11	Name		but1	but 3	but 2	but4	catechol		
12	Vapour Fraction		0.9923	1.0000	0.9964	0.0857	0.0000		
3	Temperature	(C)	30.00 *	30.03	30.03	115.0 °	30.03		
14	Pressure	(kPa)	101,3 *	101.3	101.3	2533 *	101.3		
5	Molar Flow	(kgmole/h)	4.605e-003	1.011e-002	1.015e-002	1.011e-002	3.616e-005		
6	Mass Flow	(kgħ)	0.2525 *	0.5405	0.5458	0.5405	5.315e-003		
7	Liquid Volume Flow	(m3/h)	4.039e-004	8.702e-004	8.753e-004	8.702e-004	5.074e-006		
8	Heat Flow	(kJ/h)	491.2	1055	1041	983.1	-13.86		
9	Name		alk 1	alk4	alk5	alk6	alk3		
00	Vapour Fraction		0.0000	0.0000	1.0000	0.0000	0.0000		
1	Temperature	(C)	30.00 *	75.00 °	110.0 *	115.0 *	30.00		
2	Pressure	(kPa)	101.3 *	101.3 *	111.5 *	2533 *	101.3		
3	Molar Flow	(kgmole/h)	2.239e-002	3.621e-002	3.621e-002	3.621e-002	3.621e-002		
14	Mass Flow	(kg/h)	1.000 *	1.623	1.623	1.623	1.623		
5	Liquid Volume Flow	(m3/h)	1.251e-003	2.031e-003	2.031e-003	2.031e-003	2.031e-003		
16	Heat Flow	(kJh)	-6233	-9843	-8308	-9614	-1.008e+004		
7	Name		perok1	perok2	perok3	12	13		
8	Vapour Fraction		0.0000	0.0000	0.5616	0.0000	1.0000		
9	Temperature	(C)	30.00 *	30.00	115.0 *	115.0 *	280.0		
0	Pressure	(kPa)	101.3 *	101.3 *	101.3 *	2533 *	2533		
1	Molar Flow	(kgmole/h)	2.921e-004	2.921e-004	2.921e-004	4.330e-002	4.330e-002		
2	Mass Flow	(kg/h)	6.300e-003 °	6.300e-003	6.300e-003	2.169	2.160		
3	Liquid Volume Flow	(m3/h)	5.620e-006	5.620e-006	5.620e-006	2.737e-003	2.737e-003		
4	Heat Flow	(kJ/h)	-77.03	-77.03	-68.34	-9339	-7320		
5	Name		14	0.9917	16	17	18		
16 17	Vapour Fraction	100	1.0000		1.0000	0.0000 78.87	0.1089		
18	Temperature	(C)	169.5	78.00 *	73.28		101.3		
19	Pressure Molar Flow	(kPa)	101.3 *	101.3 ° 4.330e-002	101.3	101.3 8.299e-003	3,500e-002		
0	Mass Flow	(kgmole/h)	4.330e-002 2.169	4.330e-002 2.169	3.500e-002 1.633	0.5362	1.633		
11	Liquid Volume Flow	(kg/h) (m3/h)	2.737e-003	2.737e-003	2.174e-003	5.629e-004	2.174e-003		
12	Heat Flow	(kJh)	-7714	-8072	-5830	-2567	-7198		
3	Name	(8211)	21	22	buang	24	25		
14	Vapour Fraction		0.0000	1.0000	0.0000	1,0000	1.0000		
15	Temperature	(C)	25.00	25.00	24.64	25.00	30.00		
16	Pressure	(kPa)	101.3	101.3	101.3	101.3	101.3		
17	Molar Flow	(kgmole/h)	5.551e-002	5.538e-003	5.548e-002	5.538e-003	5.538e-003		
18	Mass Flow	(kg/h)	1.000	0.2932	0.9994	0.2932	0.2932		
19	Liquid Volume Flow	(m3/h)	1.002e-003	4.712e-004	1.001e-003	4.712e-004	4.712e-004		
00	Heat Flow	(kJh)	-1.581e+004	547.4	-1.580e+004	547.4	549.7		
11	Name	Ç	REC BUT	26	27	28	19.1		
2	Vapour Fraction		1.0000	0.0000	0.0034	0.0000	0.0000		
3	Temperature	(C)	30.00 *	70.00 °	38.58	70.00	53.77		
4	Pressure	(kPa)	101.3 *	101.3 *	101.3 *	101.3 *	101.3		
5	Molar Flow	(kgmole/h)	5.540e-003 °	1.384e-002	1.565e-002	1.384e-002	2.949e-002		
6	Mass Flow	(kg/h)	0.2933	0.6235	0.7170	0.6235	1.340		
7	Liquid Volume Flow	(m3/h)	4.713e-004	7.810e-004	9.229e-004	7.810e-004	1.704e-003		
8	Heat Flow	(kJ/h)	549.9	-3773	-3864	-3773	-7636		
0									
12									
-1	Hyprotech Ltd.			HYSYS v3.2 (Build 5	000)		Page 1 of 5		

231

		Case Name:	Case Name:					
3	HYPROTECH Calgary, A	Unit Set: SI						
4	CANADA		Date/Time:					
6								
7	Workbook	: Case (Mai	n) (continue	ed)				
9		Mat	erial Streams (con	ntinued)	Fluid Pkg	Fluid Pkg: All		
10	Name	REC ALK	alk2	29	30	31		
12	Vapour Fraction	0.0000	0.0000	0.0000	0.9967	1.0000		
13	Temperature (C)	30.00 *	30.00	78.87	180.0 *	179.0		
14	Pressure (kPa)	101.3 *	101.3	101.3 °	101.3 °	101.3		
15	Molar Flow (kgmole/h)	1.382e-002 °	3.621e-002	8.299e-003	8.299e-003	8.239e-003		
16	Mass Flow (kg h)	0.6225	1.623	0.5362	0.5362	0.3551		
17	Liquid Volume Flow (m3/h)	7.798e-004	2.031e-003	5.629e-004	5.629e-004	4.422e-004		
18	Heat Flow (kJ/h)	-3848	-1.008e+004	-2567	-2159	-1850		
19	Name	32	18.0	18.1	18.2	28.1		
20	Vapour Fraction	0.0000	0.9828	0.0000	1,0000	0.0000		
21	Temperature (C)	181.0 *	5.098	53.77	25.00 *	70.00		
22	Pressure (kPa)	101.3 *	101.3	101.3	101.3	101.3		
23 24	Molar Flow (kgmole/h) Mass Flow (kg/h)	6.038e-005 0.1811	5.505e-003 0.2926	2.949e-002	5.505e-003	1.384e-002		
24 25		1,207e-004	4.706e-004	1.340 1.704e-003	0.2926 4.706e-004	0.6235 7.810e-004		
26	Liquid Volume Flow (m3/h) Heat Flow (kJ/h)	-311.4	542.5	-7636	555.4	-3773		
27	Name	28.2	32.1	-7030	555.4	-3113		
28	Vapour Fraction	0.0000	0.0000					
29	Temperature (C)	30.00 *	181.0					
30	Pressure (kPa)	101.3 *	101.3 *					
31	Molar Flow (kgmole/h)	1.384e-002	6.038e-005					
32	Mass Flow (kg/h)	0.6235	0.1811					
33	Liquid Volume Flow (m3/h)	7.810e-004	1.207e-004					
34	Heat Flow (kJ/h)	-3853	-311.4					
35 36			Compositions		Fluid Pkg	E All		
37	Name	but1	but 3	but 2	but4	catechol		
38	Comp Mole Frac (Ethanol)	0.0000 *	0.0000	0.0000	0.0000	0.0000		
-0	Comp Mole Frac (13-Butadiene)	0.9934 *	0.9827	0.9796	0.9827	0.1247		
_	Comp more Frac (13-bulaurene)			0.0030	0.0000	0.8398		
39 40	Comp Mole Frac (ptC4Catechol)	0.0066 *	0.0000					
39 40 41	Comp Mole Frac (ptC4Catechol) Comp Mole Frac (HTPB")	0.0000 *	0.0000	0.0000	0.0000	0.0000		
39 40 41 42	Comp Mole Frac (ptC4Catechol) Comp Mole Frac (HTPB") Comp Mole Frac (H2O2)	0.0000 *	0.0000	0.0000	0.0000	0.0000		
39 40 41 42 43	Comp Mole Frac (ptC4Catechol) Comp Mole Frac (HTPB*) Comp Mole Frac (H2O2) Comp Mole Frac (H2O)	0.0000 ° 0.0000 ° 0.0000 °	0.0000 0.0000 0.0173	0.0000 0.0174	0.0000 0.0173	0.0000 0.0355		
39 40 41 42 43	Comp Mole Frac (ptC4Catechol) Comp Mole Frac (HTPB") Comp Mole Frac (H2O2) Comp Mole Frac (H2O) Name	0.0000 ° 0.0000 ° 0.0000 °	0.0000 0.0000 0.0173 alk4	0.0000 0.0174 alk5	0.0000 0.0173 alk6	0.0000 0.0355 alk3		
39 40 41 42 43 44	Comp Mole Frac (PtC4Catechol) Comp Mole Frac (H2PB*) Comp Mole Frac (H2O2) Comp Mole Frac (H2O) Name Comp Mole Frac (Ethanol)	0.0000 ° 0.0000 ° 0.0000 ° alk 1	0.0000 0.0000 0.0173 alk4 0.9551	0.0000 0.0174 alk5 0.9551	0.0000 0.0173 alk6 0.9551	0.0000 0.0355 alk3		
39 40 41 42 43 44 45	Comp Mole Frac (PtC4Catechol) Comp Mole Frac (H2O2) Comp Mole Frac (H2O2) Comp Mole Frac (H2O) Name Comp Mole Frac (Ethanol) Comp Mole Frac (13-Butadiene)	0.0000 ° 0.0000 ° 0.0000 ° alk 1 0.9500 ° 0.0000 °	0.0000 0.0000 0.0173 alk4 0.9551 0.0000	0.0000 0.0174 alk5 0.9551 0.0000	0.0000 0.0173 alk6 0.9551 0.0000	0,0000 0,0355 alk3 0,9551 0,0000		
39 40 41 42 43 44 45 46	Comp Mole Frac (ptC4Catechol) Comp Mole Frac (HTPB*) Comp Mole Frac (H2O2) Comp Mole Frac (H2O) Name Comp Mole Frac (Ethanol) Comp Mole Frac (Ethanol) Comp Mole Frac (ptC4Catechol)	0,000 ° 0,000	0,0000 0,0000 0,0173 alk4 0,9551 0,0000 0,0000	0.0000 0.0174 alk5 0.9551 0.0000 0.0000	0,0000 0,0173 alk6 0,9551 0,0000 0,0000	0,0000 0,0355 alk3 0,9551 0,0000 0,0000		
39 40 41 42 43 44 45 46 47	Comp Mole Frac (ptC4Catechol) Comp Mole Frac (HTPB*) Comp Mole Frac (H2O2) Comp Mole Frac (H2O) Name Comp Mole Frac (Ethanol) Comp Mole Frac (Ethanol) Comp Mole Frac (13-Butadiene) Comp Mole Frac (ptC4Catechol) Comp Mole Frac (HTPB*)	0,000 ° 0,000	0,0000 0,0000 0,0173 alk4 0,9551 0,0000 0,0000 0,0000	0.0000 0.0174 alk5 0.9551 0.0000 0.0000	0,0000 0,0173 all46 0,9551 0,0000 0,0000 0,0000	0.0000 0.0355 alk3 0.9551 0.0000 0.0000		
39 40 41 42 43 44 45 46 47 48	Comp Mole Frac (ptC4Catechol) Comp Mole Frac (ht2O2) Comp Mole Frac (ht2O2) Comp Mole Frac (ht2O) Name Comp Mole Frac (Ethanol) Comp Mole Frac (t13-Butadiene) Comp Mole Frac (ptC4Catechol) Comp Mole Frac (ht7PB*) Comp Mole Frac (ht2O2)	0,000 ° 0,000	0.0000 0.0000 0.0173 alk4 0.9551 0.0000 0.0000 0.0000	0.0000 0.0174 alk5 0.9551 0.0000 0.0000 0.0000	0.0000 0.0173 alk6 0.9551 0.0000 0.0000 0.0000	0,0000 0,0355 alk3 0,9551 0,0000 0,0000 0,0000		
39 40 41 42 43 44 45 46 47 48	Comp Mole Frac (ptC4Catechol) Comp Mole Frac (HTPB*) Comp Mole Frac (H2O2) Comp Mole Frac (H2O) Name Comp Mole Frac (Ethanol) Comp Mole Frac (Ethanol) Comp Mole Frac (13-Butadiene) Comp Mole Frac (ptC4Catechol) Comp Mole Frac (HTPB*)	0,000 ° 0,000	0,0000 0,0000 0,0173 alk4 0,9551 0,0000 0,0000 0,0000	0.0000 0.0174 alk5 0.9551 0.0000 0.0000	0,0000 0,0173 all46 0,9551 0,0000 0,0000 0,0000	0.0000 0.0355 alk3 0.9551 0.0000 0.0000		
40 41 42 43 44 45 46 47 48	Comp Mole Frac (HZO2) Comp Mole Frac (HZO2) Comp Mole Frac (HZO2) Comp Mole Frac (HZO2) Name Comp Mole Frac (Ethanol) Comp Mole Frac (Ethanol) Comp Mole Frac (I3-Butadiene) Comp Mole Frac (HZO2) Comp Mole Frac (HZO2) Comp Mole Frac (HZO2) Comp Mole Frac (HZO2) Name	0,0000 ° 0,0000 ° 0,0000 ° 0,0000 ° 0,0000 ° 0,0000 ° 0,0000 ° 0,0000 ° 0,0000 ° 0,0000 °	0.0000 0.0000 0.0173 alk4 0.9551 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0174 alk5 0.9551 0.0000 0.0000 0.0000 0.0000 0.0449	0,0000 0,0173 alk6 0,9551 0,0000 0,0000 0,0000 0,0000 0,0449	0,0000 0,0355 alk3 0,9551 0,0000 0,0000 0,0000 0,0000 0,0449		
39 40 41 42 43 44 45 46 47 48 49 50 51	Comp Mole Frac (ptC4Catechol) Comp Mole Frac (H2O2) Comp Mole Frac (H2O2) Comp Mole Frac (H2O) Name Comp Mole Frac (Ethanol) Comp Mole Frac (Ethanol) Comp Mole Frac (ptC4Catechol) Comp Mole Frac (HTPB') Comp Mole Frac (H2O2) Comp Mole Frac (H2O2)	0,0000 ° 0,0000 ° 0,0000 ° 0,0000 ° 0,0000 ° 0,0000 ° 0,0000 ° 0,0000 ° 0,0000 ° 0,0000 °	0.0000 0.0000 0.0173 alk4 0.9551 0.0000 0.0000 0.0000 0.0000 0.0000 0.0449	0.0000 0.0174 alk5 0.9551 0.0000 0.0000 0.0000 0.0000 0.0449 perok3	0.0000 0.0173 alk6 0.9551 0.0000 0.0000 0.0000 0.0000 0.0449	0.0000 0.0355 alk3 0.9551 0.0000 0.0000 0.0000 0.0000 0.0449		
99 40 41 42 43 44 45 46 47 48 49 50 51	Comp Mole Frac (ptC4Catechol) Comp Mole Frac (HTPB*) Comp Mole Frac (H2O2) Comp Mole Frac (H2O2) Name Comp Mole Frac (Ethanol) Comp Mole Frac (Ethanol) Comp Mole Frac (H2O2) Comp Mole Frac (HTPB*) Comp Mole Frac (H2O2) Comp Mole Frac (H2O2) Comp Mole Frac (H2O2) Comp Mole Frac (H2O2) Name Comp Mole Frac (Ethanol)	0,0000 ° 0,0000 ° 0,0000 ° 0,0000 ° 0,0000 ° 0,0000 ° 0,0000 ° 0,0000 ° 0,0000 ° 0,0000 ° 0,0000 °	0.0000 0.0000 0.0173 alk4 0.9551 0.0000 0.0000 0.0000 0.0000 0.0000 0.0449 perok2	0.0000 0.0174 alk5 0.9551 0.0000 0.0000 0.0000 0.0000 0.0000 0.0049 perok3	0,0000 0,0173 alk6 0,9551 0,0000 0,0000 0,0000 0,0000 0,0449 12	0.0000 0.0355 alk3 0.9551 0.0000 0.0000 0.0000 0.0000 0.0449 13		
39 40 41 42 43 44 45 46 47 50 51 52 53	Comp Mole Frac (ptC4Catechol) Comp Mole Frac (HTPB*) Comp Mole Frac (H2O2) Comp Mole Frac (H2O) Name Comp Mole Frac (Ethanol) Comp Mole Frac (Ethanol) Comp Mole Frac (ptC4Catechol) Comp Mole Frac (HTPB*) Comp Mole Frac (H2O2) Comp Mole Frac (H2O2) Comp Mole Frac (H2O2) Comp Mole Frac (H2O3) Name Comp Mole Frac (H2O3) Comp Mole Frac (H2O3) Comp Mole Frac (H2O3) Name	0,0000 ° 0,0000 ° 0,0000 ° 0,0000 ° 0,0000 ° 0,0000 ° 0,0000 ° 0,0000 ° 0,0000 ° 0,0000 ° 0,0000 ° 0,0000 ° 0,0000 ° 0,0000 °	0.0000 0.0000 0.0173 alk4 0.9551 0.0000 0.0000 0.0000 0.0449 perok2	0.0000 0.0174 alk5 0.9551 0.0000 0.0000 0.0000 0.0000 0.00449 perok3 0.0000 0.0000	0,0000 0,0173 alk6 0,9551 0,0000 0,0000 0,0000 0,0000 0,0049 12 0,7967 0,1530	0,0000 0,0355 alk3 0,9551 0,0000 0,0000 0,0000 0,0000 0,0449 13 0,7987 0,1530		
39 40 41 42 43 44 45 46 47 48 50 51 52 53 54	Comp Mole Frac (ptC4Catechol) Comp Mole Frac (HTPB*) Comp Mole Frac (H2O2) Comp Mole Frac (H2O) Name Comp Mole Frac (Ethanol) Comp Mole Frac (Ethanol) Comp Mole Frac (ptC4Catechol) Comp Mole Frac (HTPB*) Comp Mole Frac (HTPB*) Comp Mole Frac (H2O2) Comp Mole Frac (H2O2) Comp Mole Frac (H2O) Name Comp Mole Frac (Ethanol) Comp Mole Frac (T3-Butadiene) Comp Mole Frac (T3-Butadiene) Comp Mole Frac (T3-Butadiene) Comp Mole Frac (ptC4Catechol)	0.0000 ° 0.0000 ° 0.0000 ° 0.0000 ° 0.0000 ° 0.0000 ° 0.0000 ° 0.0000 ° 0.0000 ° 0.0000 ° 0.0000 ° 0.0000 ° 0.0000 ° 0.0000 °	0.0000 0.0000 0.0173 alk4 0.9551 0.0000 0.0000 0.0000 0.0000 0.0449 perok2	0.0000 0.0174 alk5 0.9551 0.0000 0.0000 0.0000 0.0000 0.0449 perok3 0.0000 0.0000	0,0000 0,0173 alk6 0,9551 0,0000 0,0000 0,0000 0,0000 12 0,7967 0,1530 0,0000	0,0000 0,0355 alk3 0,9551 0,0000 0,0000 0,0000 0,0449 13 0,7987 0,1530 0,0000		
99 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	Comp Mole Frac (ptC4Catechol) Comp Mole Frac (HTPB*) Comp Mole Frac (H2O2) Comp Mole Frac (H2O2) Name Comp Mole Frac (Ethanol) Comp Mole Frac (Ethanol) Comp Mole Frac (HTPB*) Comp Mole Frac (HTPB*) Comp Mole Frac (HTPB*) Comp Mole Frac (H2O2) Comp Mole Frac (H2O2) Comp Mole Frac (H2O3) Name Comp Mole Frac (Ethanol) Comp Mole Frac (H2O3) Name Comp Mole Frac (Ethanol) Comp Mole Frac (H3O4) Comp Mole Frac (H3O4) Comp Mole Frac (H3O4) Comp Mole Frac (H3O4) Comp Mole Frac (HTPB*)	0.0000 ° 0.0000 ° 0.0000 ° 0.0000 ° 0.0000 ° 0.0000 ° 0.0000 ° 0.0000 ° 0.0000 ° 0.0000 ° 0.0000 ° 0.0000 ° 0.0000 ° 0.0000 ° 0.0000 ° 0.0000 °	0.0000 0.0000 0.0173 alk4 0.9551 0.0000 0.0000 0.0000 0.0449 perok2 0.0000 0.0000 0.0000	0.0000 0.0174 alk5 0.9551 0.0000 0.0000 0.0000 0.0449 perok3 0.0000 0.0000 0.0000	0,0000 0,0173 alk6 0,9551 0,0000 0,0000 0,0000 0,0000 12 0,7967 0,1530 0,0000 0,0014	0.0000 0.0355 alk3 0.9551 0.0000 0.0000 0.0000 0.0449 13 0.7987 0.1530 0.0000 0.0014		
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 56 57 58 60	Comp Mole Frac (ptC4Catechol) Comp Mole Frac (HTPB*) Comp Mole Frac (H2O2) Comp Mole Frac (H2O2) Name Comp Mole Frac (Ethanol) Comp Mole Frac (Ethanol) Comp Mole Frac (H2O2) Comp Mole Frac (HTPB*) Comp Mole Frac (H2O2) Comp Mole Frac (Ethanol) Comp Mole Frac (H2O2) Comp Mole Frac (H2O2) Comp Mole Frac (H2O2) Comp Mole Frac (H2O2) Comp Mole Frac (HTPB*) Comp Mole Frac (H2O2)	0.0000 ° 0.0000 ° 0.0000 ° 0.0000 ° 0.0000 ° 0.0000 ° 0.0000 ° 0.0000 ° 0.0000 ° 0.0000 ° 0.0000 ° 0.0000 ° 0.0000 ° 0.0000 ° 0.0000 ° 0.0000 ° 0.0000 ° 0.0000 ° 0.0000 °	0.0000 0.0000 0.0173 alk4 0.9551 0.0000 0.0000 0.0000 0.0449 perok2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0174 alk5 0.9551 0.0000 0.0000 0.0000 0.0449 perok3 0.0000 0.0000 0.0000 0.0000 0.0000	0,0000 0,0173 alk6 0,9551 0,0000 0,0000 0,0000 0,0449 12 0,7967 0,1530 0,0000 0,0014 0,0000	0,0000 0,0355 alk3 0,9551 0,0000 0,0000 0,0000 0,0449 13 0,7987 0,1530 0,0000 0,0014 0,0000		
39 40 41 42 43 44 45 46 47 48 49 50 51 51 52 53 54 65 55 56 57 58 60 61 62	Comp Mole Frac (ptC4Catechol) Comp Mole Frac (HTPB*) Comp Mole Frac (H2O2) Comp Mole Frac (H2O2) Name Comp Mole Frac (Ethanol) Comp Mole Frac (Ethanol) Comp Mole Frac (H2O2) Comp Mole Frac (HTPB*) Comp Mole Frac (H2O2) Comp Mole Frac (Ethanol) Comp Mole Frac (H2O2) Comp Mole Frac (H2O2) Comp Mole Frac (H2O2) Comp Mole Frac (H2O2) Comp Mole Frac (HTPB*) Comp Mole Frac (H2O2)	0.0000 ° 0.0001 ° 0.0000 °	0.0000 0.0000 0.0173 alk4 0.9551 0.0000 0.0000 0.0000 0.0449 perok2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0174 alk5 0.9551 0.0000 0.0000 0.0000 0.0449 perok3 0.0000 0.0000 0.0000 0.0000 0.7781	0,0000 0,0173 alk6 0,9551 0,0000 0,0000 0,0000 0,0449 12 0,7967 0,1530 0,0000 0,0014 0,0000	0,0000 0,0355 alk3 0,9551 0,0000 0,0000 0,0000 0,0449 13 0,7987 0,1530 0,0000 0,0014 0,0000		

232

1			Case Name:	Case Name:					
3	MYPROTECH Calgary, A	Unit Set:							
4	CANADA		Date/Time:	Date/Time: Wed Feb 29 16:40:14 2012					
6.	Workbook	: Case (Mai	n) (continue	(continued)					
8	33,33,33,00		, ,		Fluid Pk	D.110			
10			ompositions (cont			-			
11	Name	14	15	16	17	18			
12	Comp Mole Frac (Ethanol)	0.7987	0.7987	0.7776	0.8878	0.7776			
13 14	Comp Mole Frac (13-Butadiene)	0.1530	0.1530	0.1893	0.0000	0.1893			
15	Comp Mole Frac (ptC4Catechol) Comp Mole Frac (HTPB")	0.0000	0.0000	0.0000	0.0000	0.0000			
16	Comp Mole Frac (H2O2)	0.0000	0.0000	0.0000	0.0000	0.0000			
17	Comp Mole Frac (H2O)	0.0469	0.0469	0.0331	0.1049	0.0331			
18	Name	21	22	buang	24	25			
19	Comp Mole Frac (Ethanol)	0.0000	0.0000	0.0000	0.0000	0.0000			
20	Comp Mole Frac (13-Butadiene)	0.0000	0.9682	0.0000	0.9682	0.9682			
21	Comp Mole Frac (ptC4Catechol)	0.0000	0.0000	0.0000	0.0000	0.0000			
22	Comp Mole Frac (HTPB*)	0.0000	0.0000	0.0000	0.0000	0.0000			
23	Comp Mole Frac (H2O2)	0.0000	0.0000	0.0000	0.0000	0.0000			
24	Comp Mole Frac (H2O)	1,0000	0.0318	1.0000	0.0318	0.0318			
25	Name	REC BUT	26	27	28	19.1			
26	Comp Mole Frac (Ethanol)	0,0000 *	0.9633	0.8868	0.9633	0.9227			
27	Comp Mole Frac (13-Butadiene)	0.9681 *	0.0000	0.0808	0.0000	0.0429			
28	Comp Mole Frac (ptC4Catechol)	0.0000 *	0.0000	0.0000	0.0000	0.0000			
29	Comp Mole Frac (HTPB*)	0.0000 *	0.0000	0.0000	0.0000	0.0000			
30	Comp Mole Frac (H2O2)	0.0000 *	0.0000	0.0000	0.0000	0.0000			
31	Comp Mole Frac (H2O)	0.0319 *	0.0367	0.0324	0.0367	0.0344			
32	Name	REC ALK	alk2	29	30	31			
33	Comp Mole Frac (Ethanol)	0.9633 *	0.9551	0.8878	0.8878	0.8943			
34	Comp Mole Frac (13-Butadiene)	0.0000 *	0.0000	0.0000	0.0000	0.0000			
35	Comp Mole Frac (ptC4Catechol)	0.0000 *	0.0000	0.0000	0.0000	0.0000			
36	Comp Mole Frac (HTPB*)	0.0000 *	0.0000	0.0073	0.0073	0.0000			
37	Comp Mole Frac (H2O2)	0.0000 *	0.0000	0.0000	0.0000	0.0000			
38	Comp Mole Frac (H2O)	0.0367 *	0.0449	0.1049	0.1049	0.1057			
39	Name	32	18.0	18.1	18.2	28.1			
40	Comp Mole Frac (Ethanol)	0.0000	0.0001	0.9227	0.0001	0.9633			
41	Comp Mole Frac (13-Butadiene)	0.0000	0.9740	0.0429	0.9740	0.0000			
42	Comp Mole Frac (ptC4Catechol)	0.0002	0.0000	0.0000	0.0000	0.0000			
43	Comp Mole Frac (HTPB*)	0.9998	0.0000	0.0000	0,0000	0,0000			
44 45	Comp Mole Frac (H2O2) Comp Mole Frac (H2O)	0.0000	0.0000	0.0000	0.0000	0.0000			
45 46	Comp Mole Frac (H2O) Name	28.2	0.0260	0.0344	0.0260	0.0367			
47	Comp Mole Frac (Ethanol)	0.9633	0.0000						
48	Comp Mole Frac (2:Baracia)	0.0000	0.0000						
49	Comp Mole Frac (13-Butadene)	0.0000	0.0002						
50	Comp Mole Frac (HTPB*)	0.0000	0.9998						
51	Comp Mole Frac (H2O2)	0.0000	0.0000						
52	Comp Mole Frac (H2O)	0.0367	0.0000						
53 54			Energy Stream	is	Fluid Pk	g: All			
55 55	Name	Q-100	Q-101	Q-102	Q-103	Q-104			
56	Heat Flow (kJh)	-71.86	237.8	1535	-1306	6.846e-005			
57	Name	Q-105	Q-106	Q-107	Q-108	Q-109			
58	Heat Flow (kJ/h)	1.586e-007	8.692	-639.7	2019	394.2			
59	Name	Q-110	Q-111	Q-112	Q-114	Q-115			
60	Heat Flow (kJ/h)	357.6	1779	2104	1368	354.1			
61	Name	Q-116	Q-113	Q-117	Q-118	Q-119			
62	Heat Flow (kJ/h)	2.254	5.923e-005	1.902e-005	408.4	-2.714			
_	Hyprotech Ltd.		HYSYS v3.2 (Build 5			Page 3 of 5			

Fig. 2. The massflow each of pipe in simulation of flowdiagram process HTPB production

Equipment called reactor scale manufacture of HTPB PILOT continuously after analysis equipment availability on the market, it is modified as follows.

1. Gas Feed Module (MFC - 301) : P1 : 30 atm , P2 : 25 atm , Flow Range : $0 \sim 30 \text{ml/min}$, 316SS material , Brand : Coriflow , Input Signal : 0 - 5VDC , Output Signal : 0 - 5VDC .

- 2. Module Liquid Feed Pump (P 301), for H2O2: High pressure Digital Metering Pump, P1: 4000 psig, Flow Range: 0.002 ~ 2.5ml/min, Materials: PEEK.
- 3. Module Liquid Feed Pump (P 302) , High Pressure Digital Metering Pump (P301) : P1 : 1500 psig , Flow Range : 12:02 ~ 40ml/min , Materials : 316SS
- 4. Transfer Module pump (P 303 ~ 4) , for EtOH , Digital diaphragm Pump (P301) : P1 : 60 psig , Flow Range : $12:02 \sim 40$ ml/min , Materials : PVDF .
- 5. Transfer Module pump (P 305) , Mixer , Digital diaphragm Pump (P301) : P1 : 3000 psig , Flow Range : $0.01 \sim 20 \text{ml/min}$, Materials : 316SS
- 6. Drain Pump Module (P 306) , for HTPB , Digital diaphragm Pump (P301) : P1 : 3000 psig , Flow Range : 0.002 ~ 5ml/min , Materials : 316SS
- 7. Module Reactor (R 301) , Type : PFR , Volume : 200 ml , Materials : 316SS , Design Max . Pressure : 30 atm , Design Max . Temp . : 300C , Dimension : ID : 1 " x IL : 600mm
- 8. Electric Heater Module (H 301): Furnace : 3 Zone , 0.5 Kw x 3 , Temperature : 300C , Materials : Ceramic Fiber , " K " Type Thermocouple .
- 9. Feed Module Tank (T 301) for H2O2 , Capacity : 300 ml , Materials : PTFE or PVC , Design Pressure : atmospheric , Design Temp . : 100C , Dimensions : ID : 55mm x IL : 130mm .
- 10. Feed Module Tank (T 302) for EtOH , Capacity : 10Liter , Materials : 304SS , Design Pressure : 1 atm , Design Temp . : 100C , Dimensions : ID : 210mm x IL : 360mm
- 11. Mixer Module (M 301) , Capacity : 150 ml , Materials : 316SS , Design Pressure : 30 atm , Design Temp . : 200C , Dimensions : ID : 55mm x IL : 75mm .
- 12. Module preheater (PH $301 \sim 2$) , Electric Band Heater , Design Temperature : 150C .
- 13. Separator Module (S 301) , Capacity : 2 Liter , Materials : 316SS , Design Pressure : 3 atm , Design Temp . : 100C , Dimensions : ID : 107mm x IL : 220mm .
- 14. Condenser Module (E 301) (= Heat Exchanger), Type: Shell & Tube Type, Materials: 316SS, Capacity: 300 ml, Design Pressure: 30 atm, Design Temp.: 80C.
- 15. Condenser Module (E 302) (= Heat Exchanger) , Materials : 316SS , Capacity : 150 ml , Design Pressure : 3 atm , Design Temp . : 30C .
- 16. Condenser Module (E 303) (= Heat Exchanger) , Type : Shell & Tube Type , Materials : 316SS , Capacity : 150 ml , Design Pressure : 3 atm , Design Temp . : 250C .
- 17. Distillation tower Module (DT 301) : Capacity : 2 Liter , Materials : 316SS , Design Pressure : 3 atm , Design Temp . : 150C .
- 18. Distillation tower Module (DT 302) , Capacity : 2 Liter , Materials : 316SS , Design Pressure : 3 atm , Design Temp . : 150C .
- 19. Absorber Module (A 301), Capacity: 2 Liter, Materials: 316SS, Design Pressure: 3 atm, Design Temp.: 250C, Absorbent excluded.
- 20. Absorber Module (A 301); Capacity : 2 Liter , Materials : 316SS , Design Pressure : 3 atm , Design Temp . : 250C , Absorbent excluded .
- 21. Splitter Module (ST 302): Capacity: 2 Liter, Materials: 316SS, Design Pressure: 3 atm, Design Temp.: 100C.
- 22. Buffer Module (B 301) , Capacity : 2 Liter , Materials : 316SS , Design Pressure : 30 atm , Design Temp . : 100C , Pressure Gauge ($0 \sim 30$ atm) , Pressure Transmitter ($0 \sim 30$ atm) , Pressure Relief Valve ($225 \sim 750$ psig) .
- 23. Gas Booster (BT 301); Materials: 304SS, Air operated type, P1: atm, P2: 30 atm.

4. Testing Results and Discussion

Results from the integration of production equipment HTPB PILOT scale is shown in the following figure, following the process flow diagram of the design. In the integration of the equipment, the equipment can be operated manually or by a computer program. Equipment reorganized to make it more compact and concise, so that the overall dimensions of the equipment are 2x2x1 m. For a PILOT scale production process, then the dimension can be said to be very compact because of all the equipment arranged very close together, and cultivated cables or pipes as possible so that the fluid flow very smoothly.

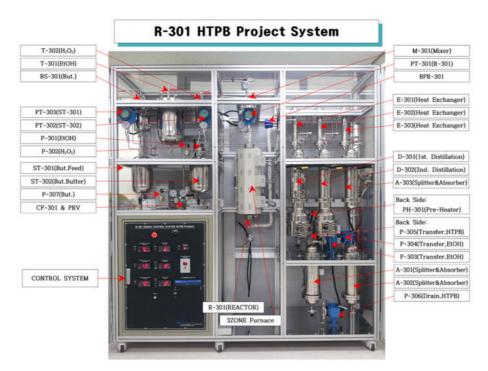


Fig. 3. Integrated System Pilot Scale Production of HTPB

Equipment tested during 1 hour operation, the results obtained HTPB with average molecular weight test by gel chromatography (GPC), identify structure of polymer with an infrared spectrometer (FTIR), and viscosity testing with digital viscometer. Results of testing the average molecular weight can be shown in the figure 4.1 and it turns out that average molecular weight polymer obtained was 3500 g/mole. The value entered in the range of requirements for fuel binder propellant. If desired HTPB with smaller molecular weight, it can done by regulating the amount of catalyst. It is conformed to Flory theory (1979) that the radical addition polymerization reaction, then the length of the polymer is strongly influenced by the number of radicals formed by the catalyst. The more the amount of catalyst in the same time it will produce polymer with an average molecular weight of the shorter. This is due to the number of radicals more so termination time at the same time will produce polymer with a number of much more radical, so that the same monomer chain length becomes shorter than the original polymer.

==== Shimadzu LCsolution GPC Analysis Report ====

Acquired by Sample Name Sampel Sample ID Vail# Sampel 0 Injection Volume 1 uL Data Filename Sampel1.lcd Method Filenam HTPB method OK.lcm Batch Filename Blanko lcb Report Filename Default lcr 9/19/2012 1:25:57 PM Date Acquired 9/19/2012 1:47:49 PM Data Processed

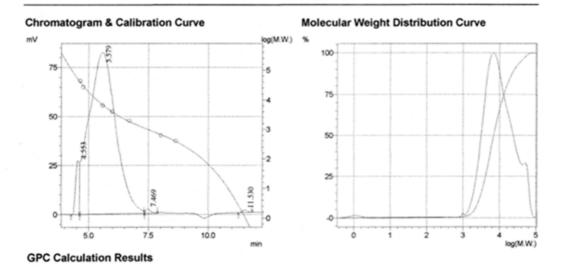


Fig 5. GPC test of HTPB

FTIR analysis results are used to determine the composition of the dominant structure of HTPB generated. This test indicates that the obtained polymer quite homogeneous. When it is compared with the reaction process HTPB in batch process, where the rate of variation of the results is high enough, then the continuous polymerization better than batch process.

Further analysis of the structure of HTPB obtained show that the dominant polymer is trans 1,4-HTPB (60 %), cis 1,4-HTPB (10 %), and 1,2 - HTPB (30 %). The result shows that the HTPB obtained in accordance with the dominant structure qualify as a propellant fuel binder, which is the dominant structure requires 1.4 - HTPB. The desired result is high cis-1, 4 but polymer obtained is low. It can be caused by conditions of the operations performed, the reaction temperature and pressure. In accordances with the results of the study (Wibowo, 2002), that which affects the dominant structure in the formation of a polymerization reaction of HTPB is temperature and type of catalyst. Reaction rate constants for the formation of cis, Trans, and vinyl structure will be a function of temperature. This fact can be used as an agenda for further research in order to obtain operating condition manipulate levels of cis-1, 4 HTPB be higher.

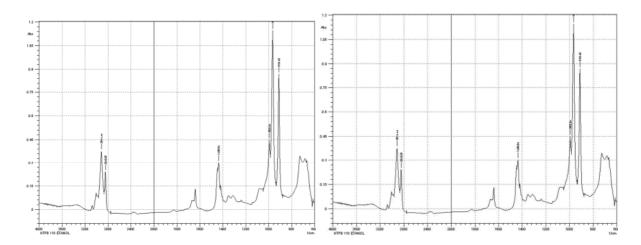


Fig. 6. FTIR spectra of HTPB at 60 minute operation and 70 minute operation time

Analysis of the test results can be shown following table. It turns out that in each interval time 10 minute for 1 hour, HTPB results have the same structure, and the same viscosity and molecular weight are almost the same. This suggests that the production process results in continuous process are more than in batch process. Wibowo (2004) state that HTPB result of procedural differences batch to vary molecular weight 2500-7000 gr/mole, the structure cis 0-12 % for 10 times the process is done.

	rable 2. Specifa FTIK at interval time reaction								
No	IR Spectra	Absorbance at Interval of reaction							
	wavelength								
		60 minute	70 minute	80 minute	90 minute	100 minute			
1	910 cm ⁻¹	2,001	2,023	2,021	2,010	2,091			
2	790 cm ⁻¹	12,020	12,070	12,056	12,011	12,090			
3	970 cm ⁻¹	34 001	33 901	34 022	34 012	34 061			

Table 2. Spectra FTIR at interval time reaction

5. Conclusion

Based on the simulation results and test reactors that have been created and integrated, it can be concluded that the process of HTPB -scale reactors can be designed with PILOT 2 ton per year results. By using basic production 2 ton per year of production calculation, 40 % conversion of the reaction, all of catalyst completely reacted, as well as all the rest of the reactants are fed back into the reactor the production system has been designed HTPB PILOT scale. Results reactor integration can be carried out in accordance with the results. HTPB continuous process gives more homogeneous results compared with the batch process. The results of testing for 1 hour operation shown that HTPB have same characteristics during the 10 minute interval results along one hour's operation. HTPB obtained have average molecule weight of 3500 g/mole, the structure cis1, 4-HTPB 10%. To get a better HTPB can done by adjusting operating conditions (temperature and pressure) and the catalyst used.

References

- 1) Avery, HE: Basic Reaction Kinetics and Mechanisms, The MacMillan Press Ltd., Hong Kong (1982), pp. 355-370.
- 2) Bahl, B.S.: Advanced Organic Chemistry, New Delhi, S. Chand and Co. Ltd. (2001).
- 3) Flory , J. : *Polymer Chemistry* , London, Cornell University Press (1979)
- 4) Dubois, C., Desilets, S., Ait-kadi, A., and Tanguy, P., 1995, *Bulk Polymerization of HTPB with TDI : a Kinetics Study Using ¹³C-NMR Spectroscopy.*, **J. Appl. Polym. Sci.**, **58**, 827-834.
- Gupta, D.C., Deo, S.S., Wast, D.V., Raomore, S.S., and Gholap, Dd.H.: HTPB-Based Polyurethanes for Inhibition of Composite Propellants., J. Appl. Polym. Sci., 55, 1151-1155. (1995)
- 6) Gupta, D.C., Divekar, P.K., and Phadke, V.K. : HTPB-Based Polyuretanes for Inhibition of Composite-Modified Double Base (CMDB) Propellants., J. Appl. Polym. Sci., 65, 355-363. (1997)
- 7) Hepburn, C.: Polyurethane Elastomers, Applied Science Publishers, pp. 355-359, New York. (1982)
- 8) Jain, D.R., Sekar, V., Krishnamurti, V.N.: Mechanical and Swelling Properties of HTPB-based Copolyurethane Networks., J. Appl. Polym. Sci., 48, 1515-1523. (1994)

- 9) Manjari, R., Pandureng, L.P., Somasundaran, U.I., and Sriram, T.: Structure-Property Relationship of HTPB-Based Propellants. I. Effect of Hydroxyl Value of HTPB Resin., J. Appl. Polym. Sci, 48, 2711-278. (1994)
- 10) Sarner, S.F.: Propellant Chemistry, Reinhold Publishing Company, New York. (1996)
- 11) Stevens, R.M.: Polymer Chemistry, PradnyaParamita, Jakarta (2001)
- 12) Timnat, J.: Advanced Rocket Propulsion. Interscience Publishers, London (1992)
- 13) Wibowo , H.B. : Effects of Particle Size In Reaction Polymerization Catalysts Catalysts butadiene with lithium, National Seminar on Chemistry UGM (2004)
- 14) Wibowo , H.B. : As a catalyst in the activation Lithium Reaction Formation HTPB . Aerospace Science and Technology Seminar, Jakarta (2004).
- 15) Wibowo , H.B. : Applications Infrared Spectrometer (IR) for Studying Reaction Kinetics butadiene emulsion polymerization. Proceedings of National Seminar JASAKIAI IV(2001)
- 16) Wibowo , H.B. : In Emulsion Polymerization Kinetics of butadiene with H2O2/Fe Initiator (II). National Seminar Proceeding JNK, Jakarta (2000)
- 17) Wibowo, H.B.: In emulsion polymerization of butadiene, LAPAN Magazine Vol 2 No 3 (2000).
- 18) Wibowo , H.B. : Polybutadiene Polymer Structure And Control Engineering Production , GAMATECH Magazine Vol 2 No 3 (2012)