An Iodine Treatments Effect on Cell Proliferation Rates of Breast Cancer Cell Lines; In Vitro Study

Authors

  • Aisyah Elliyanti Medical Physics Department, Faculty of Medicine, Universitas Andalas. Kampus Limau Manis, Padang, West Sumatra, Indonesia; Nuclear Medicine installation of the Radiology Department, Dr. M. Djamil Hospital, Padang, Indonesia
  • Veronika Y. Susilo The Center of Radioisotopes and Radiopharmaceuticals Technology, Badan Tenaga Nuklir Nasional, Puspitek Serpong, Tangerang Selatan, Indonesia
  • Sri Setiyowati The Center of Radioisotopes and Radiopharmaceuticals Technology, Badan Tenaga Nuklir Nasional, Puspitek Serpong, Tangerang Selatan, Indonesia
  • Pasupuleti Visweswara Rao Department of Biomedical Sciences and Therapeutics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia

DOI:

https://doi.org/10.3889/oamjms.2020.5447

Keywords:

Antineoplastic, Cell proliferation, Tumor progression, Cell lines, Breast cancer

Abstract

BACKGROUND: Iodine can reduce breast tumor progression by mediates an antiproliferative effect.

AIM: This study aimed to investigate the effect of iodine (I2), Lugol (I3K), and the combination of both on cell proliferation of three different types of breast cancer cell lines.

METHODS: The samples were MCF7, SKBR3, and MDA-MB 213 cell lines. Cell proliferation rate was measured using colorimetric and clonogenic assays.

RESULTS: The cell proliferation rate of MDA-MB 231 cells was reduced significantly by treatment I2, I3K, and combination of both with p = 0.046, p = 0.00, and p = 0.00, respectively. In MCF7 cells, I2 reduced the cell proliferation of 54–94% and I3K reduced the proliferation of 74–94%. The effectiveness of I3K treatments in slowing cell proliferation rate was dose-dependent. In SKBR3 cells, I2reduced proliferation cell up to 85% and I3K 4%-94% depending on the dose. Clonogenic assay results showed a discontinue of the cell proliferation by all doses of I2 and I3K (10 μM and 20 μM).

CONCLUSION: Breast cancer cell lines, representing subtypes of luminal A, HER2+, and triple-negative, show an excellent response to iodine treatments and I3K response shows in a dose-dependent manner. Further studies are needed to investigate the effective in vivo doses.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Aceves C, García-Solís P, Arroyo-Helguera O, Vega-Riveroll L, Delgado G, Anguiano B. Antineoplastic effect of iodine in mammary cancer: Participation of 6-iodolactone (6-IL) and peroxisome proliferator-activated receptors (PPAR). Mol Cancer. 2009;8:33. https://doi.org/10.1186/1476-4598-8-33 PMid:19500378

Aceves C, Anguiano B. Is iodine an antioxidant and antiproliferative agent for the mammary and prostate glands. In: Comprehensive Handbook of Iodine: Nutritional, Endocrine and Pathological Aspects. San Diego, CA: Elsevier; 2009. p. 249-57. https://doi.org/10.1016/b978-0-12-374135-6.00026-1

Aceves C, Anguiano B, Delgado G. The extrathyronine actions of iodine as antioxidant, apoptotic, and differentiation factor in various tissues. Thyroid. 2013;23(8):938-46. https://doi.org/10.1089/thy.2012.0579 PMid:23607319

Shrivastava A, Tiwari M, Sinha RA, Kumar A, Balapure AK, Bajpai VK, et al. Molecular iodine induces caspase-independent apoptosis in human breast carcinoma cells involving the mitochondria-mediated pathway. J Biol Chem. 2006;281(28):19762-71. https://doi.org/10.1074/jbc.m600746200 PMid:16679319

Elio Torremante P, Rosner H. Antiproliferative effects of molecular iodine in cancers. Curr Chem Biol. 2011;5(3):168-76. https://doi.org/10.2174/187231311796764987

Rösner H, Möller W, Groebner S, Torremante P. Antiproliferative/ cytotoxic effects of molecular iodine, povidone-iodine and Lugol’s solution in different human carcinoma cell lines. Oncol Lett. 2016;12(3):2159-62. https://doi.org/10.3892/ol.2016.4811 PMid:27602156

Kessler J. Are there side effects when using supraphysiological levels of iodine in treatment regimens. In: Comprehensive Handbook of Iodine: Nutritional, Endocrine and Pathological Aspects. San Diego, CA: Academic Press; 2009. p. 801-10. https://doi.org/10.1016/b978-0-12-374135-6.00082-0

Anguiano B, Aceves C. Iodine in mammary and prostate pathologies. Curr Chem Biol. 2011;5(3):177-82. https://doi.org/10.2174/187231311796765049

Singh P, Godbole M, Rao G, Annarao S, Mitra K, Roy R, et al. Inhibition of autophagy stimulate molecular iodine-induced apoptosis in hormone independent breast tumors. Biochem Biophys Res Commun. 2011;415(1):181-6. https://doi.org/10.1016/j.bbrc.2011.10.054 PMid:22027149

Dagenais GR, Leong DP, Rangarajan S, Lanas F, Lopez-Jaramillo P, Gupta R, et al. Variations in common diseases, hospital admissions, and deaths in middle-aged adults in 21 countries from five continents (PURE): A prospective cohort study. Lancet. 2020;395(10226):785-94. https://doi.org/10.1016/s0140-6736(19)32007-0

Elliyanti A. AIP Conference Proceedings. Maryland: AIP Publishing LLC; 2019.

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. https://doi.org/10.3322/caac.21492 PMid:30207593

DeSantis CE, Ma J, Gaudet MM, Newman LA, Miller KD, Goding Sauer A, et al. Breast cancer statistics, 2019. CA Cancer J Clin. 2019;69(6):438-51. https://doi.org/10.3322/caac.21583 PMid:31577379

Nakamura K, Okada E, Ukawa S, Hirata M, Nagai A, Yamagata A, et al. Characteristics and prognosis of Japanese female breast cancer patients: The BioBank Japan project. J Epidemiol. 2017;27(3S):S58-64. PMid:28223083

Borin TF, Angara K, Rashid MH, Achyut BR, Arbab AS. Arachidonic acid metabolite as a novel therapeutic target in breast cancer metastasis. Int J Mol Sci. 2017;18(12):2661. https://doi.org/10.3390/ijms18122661 PMid:29292756

Haque M, Desai KV. Pathways to endocrine therapy resistance in breast cancer. Front Endocrinol (Lausanne). 2019;10:573. PMid:31496995

Elliyanti A, Rusnita D, Afriani N, Susanto YD, Susilo VY, Setiyowati S, et al. Analysis natrium iodide symporter expression in breast cancer subtypes for radioiodine therapy response. Nucl Med Mol Imaging. 2020;54(1):35-42. https://doi.org/10.1007/s13139-019-00632-8 PMid:32206129

Langlands FE, Horgan K, Dodwell DD, Smith L. Breast cancer subtypes: Response to radiotherapy and potential radiosensitisation. Br J Radiol. 2013;86(1023):20120601. https://doi.org/10.1259/bjr.20120601

Aceves C, Anguiano B, Delgado G. Is iodine a gatekeeper of the integrity of the mammary gland? J Mammary Gland Biol Neoplasia. 2005;10(2):189-96. https://doi.org/10.1007/s10911-005-5401-5 PMid:16025225

Arroyo-Helguera O, Anguiano B, Delgado G, Aceves C. Uptake and antiproliferative effect of molecular iodine in the MCF-7 breast cancer cell line. Endocr Relat Cancer. 2006;13(4):1147- 58. https://doi.org/10.1677/erc.1.01250 PMid:17158760

Bontempo A, Ugalde-Villanueva B, DelgadoGonzález E, Rodríguez ÁL, Aceves C. Molecular iodine impairs chemoresistance mechanisms, enhances doxorubicin retention and induces downregulation of the CD44+/CD24+ and E-cadherin+/vimentin+ subpopulations in MCF-7 cells resistant to low doses of doxorubicin. Oncol Rep. 2017;38(5):2867-76. https://doi.org/10.3892/or.2017.5934 PMid:28901484

Micali S, Bulotta S, Puppin C, Territo A, Navarra M, Bianchi G, et al. Sodium iodide symporter (NIS) in extrathyroidal malignancies: Focus on breast and urological cancer. BMC Cancer. 2014;14:303. https://doi.org/10.1186/1471-2407-14-303 PMid:24884806

Godlewska M, Arczewska KD, Rudzińska M, Łyczkowska A, Krasuska W, Hanusek K, et al. Thyroid peroxidase (TPO) expressed in thyroid and breast tissues shows similar antigenic properties. PLoS One. 2017;12(6):e0179066. https://doi.org/10.1371/journal.pone.0179066 PMid:28575127

Arroyo-Helguera O, Rojas E, Delgado G, Aceves C. Signaling pathways involved in the antiproliferative effect of molecular iodine in normal and tumoral breast cells: Evidence that 6-iodolactone mediates apoptotic effects. Endocr Relat Cancer. 2008;15(4):1003-11. https://doi.org/10.1677/erc-08-0125 PMid:18827038

Nava-Villalba M, Nuñez-Anita RE, Bontempo A, Aceves C. Activation of peroxisome proliferator-activated receptor gamma is crucial for antitumoral effects of 6-iodolactone. Mol Cancer. 2015;14:168. https://doi.org/10.1186/s12943-015-0436-8 PMid:26376791

Rösner H, Torremante P, Möller W, Gärtner R. Antiproliferative/ cytotoxic activity of molecular iodine and iodolactones in various human carcinoma cell lines. No interfering with EGF-signaling, but evidence for apoptosis. Exp Clin Endocrinol Diabetes. 2010;118(7):410-9. https://doi.org/10.1055/s-0029-1225615 PMid:19802778

Suchanek KM, May FJ, Robinson JA, Lee WJ, Holman NA, Monteith GR, et al. Peroxisome proliferator-activated receptor alpha in the human breast cancer cell lines MCF-7 and MDA-MB-231. Mol Carcinog. 2002;34(4):165-71. https://doi.org/10.1002/mc.10061 PMid:12203367

Elliyanti A, Eka Putra A, Sribudiani Y, Noormartany N, Masjhur JS, Achmad TH, et al. Epidermal growth factor and adenosine triphosphate induce natrium iodide symporter expression in breast cancer cell lines. Open Access Maced J Med Sci. 2019;7(13):2088-92. https://doi.org/10.3889/oamjms.2019.620 PMid:31456831

Elliyanti A, Susilo VY, Setiyowati S, Ramli M, Masjhur JS, Achmad TH. Uptake and cytotoxicity characterization of radioiodine in MCF-7 and SKBR3 breast cancer cell lines. Atom Indones. 2016;42:145-9. https://doi.org/10.17146/aij.2016.586

Downloads

Published

2020-10-26

How to Cite

1.
Elliyanti A, Susilo VY, Setiyowati S, Rao PV. An Iodine Treatments Effect on Cell Proliferation Rates of Breast Cancer Cell Lines; In Vitro Study. Open Access Maced J Med Sci [Internet]. 2020 Oct. 26 [cited 2021 Jul. 3];8(B):1064-70. Available from: https://oamjms.eu/index.php/mjms/article/view/5447

Most read articles by the same author(s)