ABSTRACT
Technetium-99m (99mTc) plays a major role in diagnostic nuclear medicine and has not yet been replaced with any other radionuclides. The 99mTc is a decay product of molybdenum-99 (99Mo) and it is available through a 99Mo/99mTc generator. The 99Mo can be produced either from the fission reaction of uranium-235 or from neutron-irradiated of natural/enriched molybdenum-98. The non-fission 99Mo/99mTc generator has a low specific activity of 99Mo. This limitation, however, can be overcome by the use of high-capacity adsorbents for 99Mo. This review is focused on the current progress and future challenges in the development of high-capacity adsorbent materials for non-fission molybdenum-99 (99Mo) in the application of 99Mo/99mTc generator. We briefly summarized some materials as well as nanomaterials that show high adsorption capacity for non-fission 99Mo. We also highlighted several synthesis methods, including the green synthesis method using plant extracts which can be potentially used to obtain high-capacity adsorbent materials.
- 1. L. F. Metello, J. Med. Imaging Radiat. Sci., 46 3 (2015) 256. https://doi.org/10.1016/j.jmir.2015.07.003, Google ScholarCrossref
- 2. B. Costa, D. Ilem-özdemir, and R. Santos-oliveira, J. Coord. Chem., 26 (2019) 1. Google Scholar
- 3. V. S. Le, Sci. and Tech. Nucl. Inst., 2014 (2014) 1. Google Scholar
- 4. W.C. Eckelman, A.G. Jones, A. Duatti, et al., Drug Discov. Today, 18 (2013) 984. https://doi.org/10.1016/j.drudis.2013.06.008, Google ScholarCrossref
- 5. V V.S. Le, Z. Do, M. Le, et al., Molecules, 19 6 (2014) 7714. https://doi.org/10.3390/molecules19067714, Google ScholarCrossref
- 6. A. Duatti, Technetium-99m Radiopharmaceuticals : Status and Trends IAEA, no. 1, IAEA, 2009. Google Scholar
- 7. Anonymous, The Supply of Medical Radioisotopes 2017 Medical Isotope Supply Review: 99Mo/99mTc Market Demand and Production Capacity Projection 2017-2022. (accessed May 10, 2020). Google Scholar
- 8. J. Welsh, C. I. Bigles, and A. Valderrabano, J. Radioanal. Nucl. Chem., 305 (2015) 9. https://doi.org/10.1007/s10967-015-4090-9, Google ScholarCrossref
- 9. A. Boschi and L. Uccelli, Appl. Sci. 9 (2019) 2526. https://doi.org/10.3390/app9122526, Google ScholarCrossref
- 10. R. Chakravarty and A. Dash, J. Radioanal. Nucl. Chem., 299 1 (2014) 741. https://doi.org/10.1007/s10967-013-2823-1, Google ScholarCrossref
- 11. Marlina, Sriyono, E. Lestari, et al., J. Kim. and Kemasan, 38 2 (2016) 93. https://doi.org/10.24817/jkk.v38i2.2703, Google ScholarCrossref
- 12. National Academies of Sciences Engineering and Medicine, “Molybdenum-99 for Medical Imaging,” 2016. Google Scholar
- 13. Anonymous, “Introducing the RadioGenix System (Technetium Tc-99m Generator).” https://www.northstarnm.com/products/northstar-solutions-radiogenix-system/ (accessed May 10, 2020). Google Scholar
- 14. Anonimous, NorthStar’s Non-uranium Based Manufacturing Process. https://www.northstarnm.com/products/northstar-solutions-mo-99-production/(accessed May 10, 2020). Google Scholar
- 15. P.W. Moore, M.E. Shying, J.M. Sodeau, et al., Int. J. Radiat. Appl. Instrumentation. Part, 38 1 (1987) 25. https://doi.org/10.1016/0883-2889(87)90231-0, Google ScholarCrossref
- 16. V. S. Le, IAEA Co-Ordinated Research Programme Of The Alternative Technologies For 99mTc Generators (CRP 1990-1994), 2014. Google Scholar
- 17. P. Saraswathy, S.K. Sarkar, G.Arjun, et al., Radiochim. Acta, 92 4–6 (2004) 259. https://doi.org/10.1524/ract.92.4.259.35585, Google ScholarCrossref
- 18. F. Monroy-Guzman, L.V. Díaz-Archundia, and S. Hernández-Cortés, J. Braz. Chem. Soc., 19 3 (2008) 380. https://doi.org/10.1590/S0103-50532008000300003, Google ScholarCrossref
- 19. M.A. El-Absy, M. Amin, M.A. El-Amir, et al., Radiochemistry, 58 4 (2016) 415. https://doi.org/10.1134/S1066362216040111, Google ScholarCrossref
- 20. A. Mushtaq, M.S. Mansoor, H.Karim, et al., J. Radioanal. Nucl. Chem., 147 2 (1991) 257. https://doi.org/10.1007/BF02040373, Google ScholarCrossref
- 21. Q. Qazi and A. Mushtaq, Radiochim. Acta, 99 (2011) 231. https://doi.org/10.1524/ract.2011.1817, Google ScholarCrossref
- 22. M. Tanase, K. Tatenuma, K. Ishikawa, et al., Appl. Radiat. Isot., 48 5 (1997) 5. https://doi.org/10.1016/S0969-8043(96)00320-X, Google ScholarCrossref
- 23. J. Gomez and F. Correa, J. Radioanal. Nucl. Chem., 254 3 (2002) 625. https://doi.org/10.1023/A:1021623012496, Google ScholarCrossref
- 24. H. Salehi, E. Mollarazi, H. Abbasi, et al., J.Phys. Theor. Chem. IAU Iran, 4 44 (2008) 245. Google Scholar
- 25. J. Serrano, V. Bertin, and S. Bulbulian, Langmuir, 16 7 (2000) 3355. Google ScholarCrossref
- 26. M. Amin, M. El-Amir, H. Ramadan, et al., J. Radioanal. Nucl. Chem., 5 (2018) 1. Google Scholar
- 27. I. Saptiama, E. Lestari, E. Sarmini, et al., Atom Ind. J., 42 3 (2016) 115. https://doi.org/10.17146/aij.2016.531, Google ScholarCrossref
- 28. I. Saptiama, Marlina, E. Sarmini, et al., Atom Ind. J., 41 2 (2015) 103. https://doi.org/10.17146/aij.2015.384, Google ScholarCrossref
- 29. M. Munir, E. Lestari, E. Sarmini, et al., Ganendra, 20 1 (2017) 1. https://doi.org/10.17146/gnd.2017.20.1.3038, Google ScholarCrossref
- 30. J. Lee. H.S Han, U.J. Park, et al., Adsorbents for Radioisotopes, Preparation Method Thereof, And Radioisotope Generators Using The Same, US Patent 8,758,714 B2 (2014) Google Scholar
- 31. S. Hassan, Preparation of Chitosan-Based Microporous Composite Material And Its Applications, US Patent 8,911,695 B2 (2015). Google Scholar
- 32. A. Dash and R. Chakravarty, RSC Adv., 4 (2014) 42779. https://doi.org/10.1039/C4RA07218A, Google ScholarCrossref
- 33. R. Chakravarty, R. Shukla, R. Ram, et al., Chromatographia, 72 9–10 (2010) 875. https://doi.org/10.1365/s10337-010-1754-z, Google ScholarCrossref
- 34. R. Chakravarty, R. Ram, A. Dash, et al., Nucl. Med. Biol., 39 7 (2012) 916. https://doi.org/10.1016/j.nucmedbio.2012.03.010, Google ScholarCrossref
- 35. Marlina, E. Sarmini, Herlina, et al., Atom Ind. J., 43 1 (2017) 1. https://doi.org/10.17146/aij.2017.587, Google ScholarCrossref
- 36. Marlina et al., Atom Ind. J., 46 2 (2020) 91. https://doi.org/10.17146/aij.2020.914, Google ScholarCrossref
- 37. R. Chakravarty, R. Ram, and A. Dash, Separation Sci. and Tech., 49 (2014) 1825. https://doi.org/10.1080/01496395.2014.905596, Google ScholarCrossref
- 38. R. Chakravarty, R. Ram, R.Mishra et al., Ind. Eng. Chem. Res., 52 33 (2013) 11673. https://doi.org/10.1021/ie401042n, Google ScholarCrossref
- 39. Kadarisman et al., Atom Ind. J., 44 1 (2018) 17. https://doi.org/10.17146/aij.2018.849, Google ScholarCrossref
- 40. I. Saptiama, Y.V. Kaneti, Y. Suzuki, et al., Bull. Chem. Soc. Jpn., 90 10 (2017) 1174. https://doi.org/10.1246/bcsj.20170184, Google ScholarCrossref
- 41. I. Saptiama et al., Small, 14 21 (2018) 1. https://doi.org/10.1002/smll.201800474, Google ScholarCrossref
- 42. I. Saptiama, V. Kaneti, B. Yuliarto, et al., Chem. Eur. J. 25 (2019) 1. https://doi.org/10.1002/chem.201900177, Google ScholarCrossref
- 43. M. Munir, Sriyono, Abidin, et al., J. Radioanal. Nucl. Chem., (2020). Google Scholar
- 44. C.C. Guedes-Silva, T.D.S. Ferreira, F.M.S. Carvalho, et al., Mater. Res., 19 4 (2016) 791. https://doi.org/10.1590/1980-5373-MR-2015-0560, Google ScholarCrossref
- 45. R. Feng, X. Hu, X. Yan, et al., Microporous Mesoporous Mater., 241 (2017) 89. https://doi.org/10.1016/j.micromeso.2016.11.035, Google ScholarCrossref
- 46. S. Siahpoosh, E. Salahi, F. Hessari, et al., Bull. la Société R. des Sci. Liège, 85 (2016) 912. Google Scholar
- 47. S. Faramawy, M. El-Shall, M.A. El Wahed, et al., J. Am. Sci., 10 9 (2014) 139. Google Scholar
- 48. N. Xu, Z. Liu, Y. Dong, et al., CrystEngComm., 42 13 (2016) 2445. Google Scholar
- 49. S. Ghosh, R. Dalapati, and M. K. Naskar, J. Asian Ceram. Soc., 2 4 (2014) 380. https://doi.org/10.1016/j.jascer.2014.08.002, Google ScholarCrossref
- 50. K. Zhang, C. Li, J. Yu, et al., Chinese J. Chem. Eng., 25 1 (2017) 137. https://doi.org/10.1016/j.cjche.2016.07.007, Google ScholarCrossref
- 51. Y. Ge, Z. Jia, C. Gao, et al., Russ. J. Phys. Chem. A, 88 10 (2014) 1650. https://doi.org/10.1134/S0036024414100355, Google ScholarCrossref
- 52. C. Kim, Y. Kim, P. Kim, et al., Korean J. Chem. Eng., 20 6 (2003) 1142. https://doi.org/10.1007/BF02706951, Google ScholarCrossref
- 53. A.A. Taromi and S. Kaliaguine, Microporous Mesoporous Mater., 248 (2017) 179. https://doi.org/10.1016/j.micromeso.2017.04.040, Google ScholarCrossref
- 54. K. Zhang, C. Li, J. Yu, et al., Chinese J. Chem. Eng., 25 1 (2017) 137. https://doi.org/10.1016/j.cjche.2016.07.007, Google ScholarCrossref
- 55. B. Xu, T. Xiao, Z. Yan, et al., Microporous Mesoporous Mater., 91 1–3 (2006) 293. https://doi.org/10.1016/j.micromeso.2005.12.007, Google ScholarCrossref
- 56. R. Zhao, F. Guo, Y. Hu, and H. Zhao, Microporous Mesoporous Mater., 93 1–3 (2006) 212. https://doi.org/10.1016/j.micromeso.2006.02.024, Google ScholarCrossref
- 57. Y.S. Wu, J. Ma, F. Hu, et al., J. Mater. Sci. Technol., 28 6 (2012) 572. https://doi.org/10.1016/S1005-0302(12)60100-5, Google ScholarCrossref
- 58. V. Mishra, R. Sharma, and N. D. Jasuja, Int. J. Green Herb. Chem., 3 1 (2014) 81. Google Scholar
- 59. H.N.Ğ. Lu, A.A. Güngör, and S. İ. Nce, Int. J. Inn. Res. and Rev., 1 1 (2017) 6. Google Scholar
- 60. J. Singh, T. Dutta, K.H. Kim, et al., J. Nanobiotechnology, (2018) 1. Google Scholar
- 61. A. Gour and N.K. Jain, Artif. Cells, Nanomedicine, Biotechnol., 47 1 (2019) 844. Google Scholar
- 62. L. Ms, S. Abbas, F. Kormin, and M. Mk, Asian J. Pharm. Clin. Res., 12 7 (2019) 75. Google Scholar
- 63. J. Huang, G. Zhan., B. Zheng, et al., Ind. Eng. Chem. Res., (2011) 9095. https://doi.org/10.1021/ie200858y, Google ScholarCrossref
- 64. S. Jain and M. S. Mehata, Sci. Rep., (2017) 1. Google Scholar
- 65. N. Ain and R. Nor, Ceram. Int., 39 (2013) S545. https://doi.org/10.1016/j.ceramint.2012.10.132, Google ScholarCrossref
- 66. P. Elia, R. Zach, S. Hazan, et al., Int. J. Nanomed., (2014) 4007. Google Scholar
- 67. Y. Yulizar, T. Utari, H. A. Ariyanta, et al., Hind. J. Nanomat., 2017 (2017) 1. https://doi.org/10.1155/2017/3079636, Google ScholarCrossref
- 68. Foliatini and Nurdiani, Orient. J. Chem., 35 4 (2019) 1453. https://doi.org/10.13005/ojc/350429, Google ScholarCrossref
- 69. R.A. Raj, M.S. Alsalhi, and S. Devanesan, Materials, 10 (2017) 1. Google Scholar
- 70. N. Sulaiman and Y. Yulizar, Mat. Sci. Forum, 917 (2018) 167. https://doi.org/10.4028/www.scientific.net/MSF.917.167, Google ScholarCrossref
- 71. Y. Yulizar, D.O.B. Apriandanu, and A. Prasetiyo, Compos. Commun., 16 (2019) 50. https://doi.org/10.1016/j.coco.2019.08.006, Google ScholarCrossref
- 72. P. Sutradhar, N. Debnath, and M. Saha, Adv. Manuf., 1 4 (2013) 357. https://doi.org/10.1007/s40436-013-0043-0, Google ScholarCrossref
- 73. Á.B. Sifontes, B. Gutierrez, A. Monaco, et al., Biotechnol. Reports, 4 1 (2014) 21. https://doi.org/10.1016/j.btre.2014.07.001, Google ScholarCrossref
- 74. M.A. Ansari, H.M. Khan, M.A. Alzohairy, et al., World J. Microbiol. Biotechnol., 31 1 (2015) 153. https://doi.org/10.1007/s11274-014-1757-2, Google ScholarCrossref
- 75. M. Nasrollahzadeh, Z. Issaabadi, and S. M. Sajadi, J. Mater. Sci. Mater. Electron., 30 4 (2019) 3847. https://doi.org/10.1007/s10854-019-00668-8, Google ScholarCrossref
- 76. D. Sarkar, S. Adak, and N.K. Mitra, Compos. Part A Appl. Sci. Manuf., 38 1 (2007) 124. https://doi.org/10.1016/j.compositesa.2006.01.005, Google ScholarCrossref
- 77. H.K. Farag, M.Al Zoubi, and F. Endres, J. Mater. Sci., 44 1 (2009) 122. https://doi.org/10.1007/s10853-008-3107-y, Google ScholarCrossref
- 78. S.M. Morris, J.A. Horton, and M. Jaroniec, Microporous Mesoporous Mater., 128 1–3 (2009) 180. https://doi.org/10.1016/j.micromeso.2009.08.018, Google ScholarCrossref
- 79. K. Tahmasebi and M. H. Paydar, J. Alloys Compd., 509, no. 4 (2011) 1192. https://doi.org/10.1016/j.jallcom.2010.09.176, Google ScholarCrossref
- 80. M. Ebrahimi-Basabi, J. Javadpour, H. Rezaie, et al., Adv. Appl. Ceram., 107, no. 6 (2008) 318. https://doi.org/10.1179/174367508X289433, Google ScholarCrossref
Article Metrics
Views
75
Citations
Crossref
0
Web of Science
ISI
0
Altmetric
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.