No Access
Published Online: 23 April 2019
AIP Conference Proceedings 2097, 030041 (2019); https://doi.org/10.1063/1.5098216
The Reactor of subcritical assembly for molybednum production (SAMOP) needs an instrumentation and control system to ensure it process and operation run well. This work is performed to design a data acquisition system based on LabVIEW FPGA as a part of SAMOP instrumentation and control system. The data acquisition system of SAMOP reactor is designed by implementing NI 9147 module, which consist of NI 9205 analog digital input module and NI 9403 digital output module as parameter acquisition hardware. The data acquisition software was developed using LabVIEW FPGA as data processing. Data acquisition software was developed by utilizing FPGA resource, which has been provided in the NI 9147 module. This data acquisition system can acquire SAMOP parameters i.e. temperature, safety rod position, and neutron detection rate from the FC and CIC detectors. It has been tested by comparing the acquired parameter value in the HMI with the actual values, and the maximum average error was 1.45%.
  1. 1. T. Suhaemi and Setyono, "Evaluasi Keselamatan Reaktor Kartini Ditinjau dari Desain Sistem Instrumentasi," in Presentasi Ilmiah Teknologi Keselamatan Nuklir, Yogyakarta, 2003, pp. 49–60. Google Scholar
  2. 2. A. Abimanyu, Syarip, E. Supriyatni, Wagirin, D. Gunawan, and Marsudi, "The Development of Kartini Reactor Data Acquisition System to Support Nuclear Training Center (NTC)," in EECCIS-ICNERE, Batu, Malang, 2016. Google Scholar
  3. 3. G. Stanescu. (2016, 17 November 2016). Nuclear Training Center (NTC). Available: http://cpsdn.nipne.ro, Google Scholar
  4. 4. B. D. Tigliole and J. Vyshniauskas, "RA-6 Online +IRL: An Effective Collaboration between CNEA and IAEA for the Development of a Research Education Remote Tool," in Europe Reasearch Reactor Conference, Berlin, Germany, 2016, p. 215. Google Scholar
  5. 5. Syarip, T. Sutondo, B.E. Trijono, E. Susiantini, Design and Development of Subcritical Reactor by Using Aqueous Fuel for Mo-99 Production, Proceedings of the Pakistan Academy of Sciences: A. Physical and Computational Sciences, Pakistan Academy of Sciences (2018), 55 (1), pp. 21–26. Google Scholar
  6. 6. Syarip and T. N. H. Susanto, "Analisis Termohidrolik Fasilitas Eksperimen SAMOP (Reaktor Subkritik Produksi Isotop Mo-99)," Jurnal Pengembangan Energi Nuklir, pp. 25–31, 2017. https://doi.org/10.17146/jpen.2017.19.1.3354, Google ScholarCrossref
  7. 7. T. Lak, "Program Utilisasi Beamport Reaktor Kartini Untuk Penelitian Pengembangan Subcritical Assembly For Moly Production (SAMOP) rev 6," B. R. Psta, Ed., ed. Yogyakarta, 2018. Google Scholar
  8. 8. K. Santosa, "Pengembangan Sistem Akusisi Data Tekanan dan Temperatur pada FESPeCo Menggunakan NI CRIO 9074," Jurnal Sigma Epsilon, pp. 79–87, 2013. Google Scholar
  9. 9. K. Santosa, "Aplikasi LabView berbasis Field Programmable Gate Array (FPGA) NI CRIO 9047 pada Sistem Pengukuran Temperatur Heating-02," in Seminar Penelitian dan Pengelolaan Perangkat Nuklir, Yogyakarta, Yogyakarta, 2013, pp. 217–224. Google Scholar
  10. 10. W. Bolton, Instrumentation and Control System: Elsevier Science & Technology Books, 2004. Google Scholar
  11. Published by AIP Publishing.