

Volume 1 (2020) PROCEEDING

of International Conference on Nuclear Capacity Building, Education, Research and Applications

Yogyakarta, Indonesia September, 6th-7th.2019

Indonesia Nuclear Expo

Publisher Badan Tenaga Nuklir Nasional

Preface

The International Conference on Nuclear Capacity Building, Education, Research and Application, **I-Concern'19**, organised by the National Nuclear Energy Agency (BATAN), was held in Yogyakarta, Indonesia on September 6 - 7, 2019. This conference which is a part of the Indonesia Nuclear Expo (**NEXPO**) 2019 event was a fruitful and successful scientific gathering between lecturers, researchers, academics, practitioners and communities, medical specialists, industries, government, and the public on exploring the nuclear technology in terms of human resources, applications, technology, policies, and innovation.

The two days program of I-Concern'19 accommodating 7 keynote and 18 invited speakers, and 108 contributed talks in Plenary and Parallel Sessions. At the same time, 144 posters were also presented in the 2 Poster Sessions, while 15 vendor exhibitors displayed their commercial products on nuclear medical applications, nuclear instrumentation, NDT equipment, and other products. In total, 250 presenters and 37 observers coming from 9 countries of 3 continents had been gathering for the 2 days of the conference.

From this conference, we received 234 manuscripts. All of them have been intensively reviewed and have been decided by the Chief of Editors to publish 145 papers in the IOP Journal of Physics Conference Series 2020, Volume 1436. Other manuscripts were published in the Jurnal Forum Nuklir 2020, Volume 40 (6 papers), Indonesian Journal of Materials Science (Jusami) 2020, Volume 21 (4 papers), and in this Conference Proceeding (79 papers).

We are very much grateful to the esteemed members of the International and Local Advisory Committees for their advice and guidance, the supports from the National Nuclear Energy Agency (BATAN) in collaboration with the Indonesian Society for Nuclear Medicine (PKNI), the International Atomic Energy Agency (IAEA), the Ministry of Health of the Republic of Indonesia, National Standardization Agency of Indonesia (BSN), the World Federation of Nuclear Medicine and Biology, the Clarkson University, USA. We also gratefully acknowledge the sponsorships.

We hope that the present proceedings provide the valuable information to the readers in the field of nuclear science, technology, innovation and human resources development.

March 27, 2020

Edy Giri Rachman Putra, Ph.D Chairman of I-Concern'19

Conference Chair Edy Giri Rachman Putra, Ph.D

International Advisory Committee

Prof. Amirreza Jalilian, Pharm D, PhD (International Atomic Energy Agency)
Prof. Dr. Dong Soo Lee (World Nuclear Medicine and Biology)
Prof. Dr. Philipe Hopke (Clarkson University, USA)
Prof. Hiroyuki Miyamoto (Doshisha University, Japan)
Dr. Somchai Tancharakorn (Synchrotron Light Research Institute, Thailand)
Dr. Myungkook Moon (Korea Atomic Energy Research Institute, Korea)
Dr. Bin Fei (Institute of Textile and Clothing, Hongkong Polytechnic University)

Local Advisory Committee

Prof. Dr. Ir. Anhar Riza Antariksawan Ir. Falconi Margono Sutarto, MM Prof. Dr. Ir. Efrizon Umar, M.T Dr. Hendig Winarno, M.Sc Ir. Suryantoro, M.T Drs. Totti Tjiptosumirat, M.Rur.Sci Dr. Jupiter Sitorus Pane, M.Sc Drs. Budi Santoso, M.Eng Ir. Ruslan

Scientific Programme Committee

Dr. Muhammad Rifai, M.Eng Dr. Emy Mulyani Prof. Drs Darsono, M.Sc Dr. Darmawan, Apt Dra. Mujamilah, M.Sc Dr. Muhtadan Isti Daruwati, M.Si Dr. Sobrizal Dr. Irawan Sugoro, M.Si Adi Abimanyu, M.Eng Dr. Basuki Hidayat, dr., Sp.KN (K) dr. Nopriwan, SpKN dr. Hendra Budiawan, SpKN (K) FANMB

Editorial Team

Dr. Muhammad Rifai, M.Eng Dr. Emy Mulyani Haerul Ahmadi, M.Si Ayu Jati Puspitasari, M.Si

Guest Editors

Prof. Dr. Dani Gustaman Syarif Dr. Imam Kambali Drs. Djoko Slamet Pudjoraharjo Dr. Taufik Tjipto Sujitno, M.T Mahrus Salam, M.Sc Ir. Theresia Rina Mulyaningsih, M.Si Drs. Tri Hardi Priyanto, M.T Agus Salim Afrozi, M.T Ir. Bagiyono, M.Sc Dr. Adel Fisli Dr. Andon Insani, M.Eng Dra. Auring Rachminisari Dr. Jan Setiawan, M.Si Dr. Marzuki Silalahi Ir. Sucipta, M.Si Dra. Grace Tjungirai Sulungbudi, M.Sc Dr. I Putu Susila Dr. Mukh. Syaifudin

Local Organizing Committee

Haerul Ahmadi, M.Si Ayu Jati Puspitasari, M.Si Halim Hamadi, M.Sc Lutfi Aditya H, M.Sc Aris Bastianudin, M.M Lutfi Syarif Ahmad, SAB Ardina Mei Devinta Suryana, SST Thomas Chandra Andrian, SST Oksi Widiantono, A.Md.T Fauzi Maulana Rachman, SST Sinta Uri El Hakim, SST Royan Novi Amar, SE Ajie Noorseto, S.Kom Wens Roland

Contents

Preface	
Foreword	ii
Committee	iv
Content	vi

Papers

Design of determination system of current and voltage levitation on prototype maglev	1
conveyor using fuzzy logic	
Fahriza, Supriyono, and A J Puspitasari	
Analysis of image result in aluminium and steel plates using digital and conventional	8
radiography	
Z Abidin, K T Basuki, Suroso, J Atri, and T Mulyono	
Development of an auxiliary software for WIMS input file creation as a means of	16
calculating the critical mass of the Kartini reactor	
P H Sadewo and P I Wahyono	
Exploring the potential of sorghum for food, animal feed and bioenergy through induced	22
mutation breeding	
Sihono, H Soeranto, M I Wijaya, Y M Marina, W Puspitasari, and T Wahyono	
Stopper and construction joint on shielding for the irradiator building in Indonesia	29
H Saptowati, A R Yanto, T Wahono, and Praptana	
Analysis of temperature distribution of cooling water for Co-60 source to gamma irradiator	37
safety	
Sanda, Kasmudin, and S Ramdja	
Study of gamma heating of the topaz irradiation using B4C container and stringer	47
A Sunardi, R Mahardika, A Rohanda, M Alfarisie, K Mustofa, and Camelia	
Synthesis and selectivity of benzotriazolium-based room temperature ionic liquids for	53
technetium-99m separation from molybdenum by IL-mediated liquid-liquid extraction	
Y Setiadi. M B Febrian. A Mudzakir. A Aziz. D Setiawan. A K Illahi. and D A Rahmawati	
Fabrication of Fe-17Cr-25Ni ODS steels using arc plasma sintering method	60
R Salam, A Dimvati, M Dani, Sumarvo, and N Shabrina	
Wattmeter development on the laser LED power supply as a supporting tool for basic	67
research on gold nanoparticles-based photothermal cancer therapy	
F A Wibowo, A Pujiyanto, M Subechi, A H Gunawan, I Listyowati, R Soetikno, and M	
Julita	
Synthesis of butyl bromide labelled ⁸² Br for leakage detection application in industrial	76
pipeline system	
A Suherman, T S Mulyati, I Iswahyudi, B S Rattyananda, D Cartika, W P Silpia, M Hulupi,	
D Setiawan, and M B Febrian	
Software requirement specification (SRS) of nuclear education platform in android platform	83
F P Pangestu, F Nurfuadia, A Muslich, and W B Santoso	

Function and performance test of the device Glassman PS/OQ350RO10 model	94
Sukaryono, E Priyono, and A Dwiatmaja	
Neutronic characterization of training, research, isotope production by general atomic	103
(TRIGA) reactor Bandung with modification plate fuel cladding using MCNP6	
A Andariska, Suharyana, F Anwar, Riyatun, Soeparmi, and A Khakim	
Study of PS/OQ350R018-model glassman high voltage to support the operation of 250	108
keV/10 mA EBM PSTA - BATAN Yogyakarta	
E Privono, Sukaryono, and A Susanto	
Comparison test of XRF and NAA methods for analysis of in-house monazite sand CRM	120
candidate	
S T Sunanti, Sukirno, and Samin	
The behaviour of RF generator for dee power supply in cyclotron DECY-13	126
A Dwiatmaja, T Atmono, and Saminto	
Study of selective adsorption of activated charcoal for Technetium-99m from natural	131
Molybdenum-99 for medical applications	
H Setiawan, Srivono, N Ahid, Hambali, A H Gunawan, Marlina, and M Munir	
Determination of the width of gamma radiation field of the OB-85 (¹³⁷ Cs source) at	138
calibration facility of PTKMR - BATAN	
Nazaroh, O A Firmansvah, A F Firmansvah, and A Afham	
The relative threshold switching median algorithm to remove white spot noise and increase	150
the homogeneity of neutron radiographic images	
A Hindasyah, G S Sulistio, and Bharoto	
Analysis of heat capacity constant for SAMOP (subcritical assembly for ⁹⁹ mo production) in	161
Kartini reactor	
A F Anugrah, Z E Bhagaskara, and W Karsono	
Improvement of radioscopy images by image averaging and temporal median filter	171
R Hijazi and J B Sulistyo	
Test function after revitalization on water leaching units	178
Sudaryadi and Sajima	
Determination of elements content in neutron collimator before and after manufacturing	183
using neutron activation analysis	
A Budianto, Khoirunnisa, and Widarto	
Experimental study of natural convection valve detection system on Bandung research	196
reactor	
T S Santiko, K A Sudjatmi, and B Darmono	
Sensitivity curve for elements quantifying in soil samples on EDXRF MINIPAL 4	200
N Adventini, D D Lestiani, W Y N Syahfitri, S Kurniawati, and E Damastuti	
Quality improvement of quartz crystal microbalance sensor using oleyl alcohol lipid	208
membrane on HCl testing	
I Tazi, A R Ummah, and Muthmainnah	
Testing of the secondary caprari refrigerator pump 1 TRIGA 2000 reactor Bandung	212
Koswara, Y Supriatna, and T Subekti	
An optimation of vacuum system for the cyclotron chamber DECY-13	220
T M Atmono and K Wibowo	
High radiation chamber door design with pneumatic actuator	224
Y Yunus, D Priyantoro, and F T Nafisa	

Absolute standardization of ⁶⁵ Zn by sum-peak method in PTKMR - BATAN	236
H Candra, G Wurdiyanto, and Holnisar	
Development of an android bases e-report apps in effectively managing complaints of any	240
damage case in PSTBM-BATAN	
E V Noviantana, Suyatno, and A Dimyati	
Human tracking control system using Kinect sensors on wheelchair based on Arduino	249
H Hamadi, B Suhendro, M S Alamsyah, and M Ibrahim	
The design and construction of furnace for small angle neutron spectrometer	250
H Mugirahardjo, N Suparno, Saparudin, and A Insani	
Quality assurance and quality control at dose calibrator to support nuclear medicine services	254
Nazaroh	
Penentuan mass absorption coefficient black carbon pada berbagai panjang gelombang	255
untuk identifikasi sumber pencemar	
D P D Atmodjo, Supriyono, Muhayatun, dan S Kurniawati	
Improvement of Bangka's white pepper quality using gamma irradiation technology:	264
microbial contamination reduction	
D Darwis, T Puspitasari, N Nuryanthi, I Kadir, Wattiny, D S Pangerteni, and S Susilawati	
Leaching kinetics of sodium zirconate in hydrochloric acid based on shrinking core models	265
M Setyadji and Sudaryadi	
Indoor Radon measurements in Madura dwellings	266
Wahyudi, I D Winarni, and M Wiyono	
Sm-153 EDTMP for metastatic bone pain therapy in breast cancer	267
A Rumbiana, E A Pangarsa, and G Gunawan	
Simulation of water flow in a conduit using radiotracer-axial dispersion model	271
S Sugiharto	
Evaluation of customize syringe carrier box for transferring radionuclide Iodine-131 in	272
nuclear medicine	
A P Mukti	
Neutronic analysis of DECY-13 cyclotron target system as a neutron source for SAMOP	273
R F Isdandy, Syarip, Silakhuddin, K Wibowo, and Suharni	
Commissioning test of the Irradiator Gamma Merah Putih	274
A Satmoko, H A Gunawan, R Kardos, B Rozali, and M D Purwadi	
Qualitative analysis of long-lived residual radioisotopes in 18 MeV proton bombarded	275
enriched water target	
I Kambali, H Suryanto, Rajiman, Parwanto, F Rindiyantono, A A Billah, and Pasha	
Transmutation of ¹²⁹ I containing nuclear waste by proton bombardment	276
I Kambali	
Alkaline comet assay as a predictor of DNA damage in medical radiation workers	277
H N E Surniyantoro, Darlina, and T Rahardjo	
Detection and measurement of obstacles on a track using color segmentation with	278
background subtraction and morphological operation	
H Hamadi, Supriyono, and D Riansah	0.50
Accelerated purification of sorghum mutant line by using rapid cycling methods	279
W M Indriatama and Anisiyah	

Effect of projections number on the image quality of industrial parallel beam gamma	280
tomography	
B Azmi and M Stefanus	
The assessment of mitotic and nuclear division indexes as biomarkers for estimating the risk	281
on the health of residents exposed to the high natural radiation of Mamuju, West Sulawesi	
S Purnami, M Lubis, Suryadi, and M Syaifudin	
Planning and concept of borehole disposal technology for disposal of disused sealed	282
radiation sources from using in health and industry	
Sucipta and H A Pratama	
Characteristic of natural radionuclide in the rivers of Palembang, Pontianak, and	283
Palangkaraya	
G Suhariyono, I D Winarni, and J Mellawati	
Assessment of heavy metals pollution in the sediment of Ciliwung river	284
T R Mulyaningsih, M Irmawati, Istanto and Alfian	
Evaluation and assessment of 7 years of radioactivity monitoring data for Th-23, Ra-226,	285
K-40 on surface soil and the impact of the construction of mass rapid transit stations around	
Pasar Jumat nuclear area	
L Rixson, M Stefanus, and M Fajar	
Influence of blankets bore pile on soil characteristics Irradiator Gamma Merah Putih	286
of Serpong	
H Saptowati, T Wahono, Praptana, and A Bagas	
Elemental analysis of wepal sample using INAA in the framework of the 2017 IAEA	287
proficiency test program	
Sutisna, Alfian, and Istanto	
Determination of potassium in foodstuffs consumed in Mamuju Indonesia by neutron	288
activation analysis	
A H As'ari, S Yusuf, and T R Mulyaningsih	
Analysis of TRIGA 2000 core reshuffling scenario based on fuels burn up and fuels density	289
Nailatussaadah, P Basuki, and K Sudjatmi	
Occupational dose during an interventional radiology procedure	290
D Kartikasari, N Nuraeni, H Sofyan, and E Hiswara	
Non-destructive evaluation of nuclear grade IG-110 graphite using constant potential X-Ray	291
R Himawan, Sutrasno, and S B Santoso	
An analysis of the dee voltage of DECY-13 cyclotron based on a simple model	292
A H Shali, T M Atmono, and Saminto	
Study on technology of RF ion source for compact neutron generator	293
D S Pudjorahardjo and Suprapto	
Quality controls of radiolabeled compounds ¹³¹ I–Hippuran as PSTNT-BATAN product	294
using electrophoresis method	
T S Mulyati, E Rosyidiah, A Suherman, I Iswahyudi, and T H A Wibawa	
Validation and calibration of efficiency of various standard source for radioactivity analysis	295
of gamma soil samples	
D S Purnama and M K Akbari	
Stability of ¹³¹ I-Ortho-Iodo-Hippuric Acid (¹³¹ I-Hippuran) labelled compound produced by	296
CANST (Center of Applied Nuclear Science and Technology) - BATAN Bandung	
E Rosyidiah, T S Mulyati, A W T Hafiz, R J Sugiharti, and M E Sriyani	

Stability texture analysis on the AZ31 Magnesium alloy using neutron diffraction method	297
T H Priyanto, A Insani, R Muslih, and Bharoto	
Analysis of external radiation exposure from building materials using resrad-build (case	298
study: Perumnas Bumi Guwosari)	
D F Anggraeni, G S Wijaya, and A Muharini	
Design of sorting machine prototype in electronic circuit based on NI-MyRIO 1900	299
N Kurniawati, Adi Abimanyu, and Muhtadan	
Construction of digital survey meter model SDM-03 using ATMega 8 microcontroller	300
Jumari, N Supriyanto, H Aditesna, and S Widodo	
Design of power control system for automatic operation of the Kartini reactor	301
Sutanto, F R Iskandar, and P I Wahyono	
Determination of micro essential element Fe in foodstuffs using instrumental neutron	302
activation analysis (INAA)	
S Yusuf, S Suprapti, Istanto, R Mulyaningsih, Sutisna, and Alfian	
Design of control instrumentation system for setting the stripper position on	303
DECY-13 cyclotron	
Saminto, A Susanto, R Fajarudin, A Budianto and A Abimanyu	
Design of the controller module of mobile carrier radioactive source	304
D F Atmoko, J Triyanto, M Amin H D, F Harahap, and T Jayadiharja	
Design of reflector TRIGA mark II Bandung waste container shielding using micro shield	305
7.02	
Irsyad, S Purnomo, and R H Oetami	
Study using internet of things to control radiation level	306
A Taufiq and S Zanuar	
Characterization of wood-borax composites as alternative neutron shielding material using	307
neutron radiography techniques	
A S Afrozi, A Rachminisari, R Salam, and A Nana S	
In-situ battery measurement of LiFePO4 cathode during charge mechanism using X-ray	308
diffraction	
E Hutamaningtyas, Sudaryanto, B Sugeng, W Honggowiranto, and E Kartini	
Assessment of heavy metals concentration in the water around the area of Adipala Cilacap	309
steam power plant using neutron activation analysis	
K Rozana, Sukirno, D S Prabasiwi, and S Murniasih	
Initial optimization of fine tuner's position on the cyclotron DECY-13's RF dee system	310
R S Darmawan, K Wibowo, and F I Diah	
Correction of vertical point of projection images using the correct axis tilt parameter in the	311
Octopus software package	
F Suryaningsih and D C Dewi	
Determination of internal and external hazard index of natural radioactivity in well water	312
samples	
D S Purnama and T Damayanti	
Steady-state thermal-hydraulic analysis of the TRIGA 2000 reactor core when using	313
configuration of 105 fuels	
R Nazar and J S Pane	
Determination of radioactivity discharge limit to the atmosphere on Bandung nuclear area	314
J Chussetijowati and H Seno	

Design of rotating table control for acquiring an image in industrial gamma-ray CT	315
prototype using Raspberry Pi 3B+ module	
I Shobari, R T Saputra, D Handoyo , and D A Rahadi	
Application of Thomas Fermi model on the study of the transition phase from the inner crust	316
to the core of neutron star	
I Lathifa and E T Sulistyani	
Estimation of air cooling requirement for the Soebali 2.0 laboratory	317
Sutadi, Saefurrochman, E Nuraini, and Suprapto	
Analysis of coolant flow distribution to the reactor core of modified TRIGA Bandung with	318
plate-type fuel	
V I S Wardhani, J S Pane, and S Dibyo	
Synthesis and characterization of hydroxyapatite from duck eggshell modified silver by	319
gamma radiolysis method	
F Nurfiana, A Kadarwati, and S Putra	
Design of gamma irradiator simulator category IV using Arduino Mega's	320
I A Purbhadi, B Suhendro, and D S Ayudya	
Radiation shielding design requirement in the proton energy measurement facility at DECY-	321
13 cyclotron	
Silakhuddin, Suharni, and K Wibowo	
Gas flow control design vapor deposition in chemical facilities	322
T Dermawan, N P Priambogo, and S Rianto	
Analysis of heat transfer at electron beam machine $300 \text{ kV}/20 \text{ mA}$ laboratory	323
L Arifudin, Saefurrochman, Supranto, and Sutadi	
Magnetic field of DECY-13 from numerical extrapolation of the measurement result for	324
beam trajectory simulations in central region	02.
I A Kudus Silakhuddin P Angoraita and M Satriawan	
Development of PID-based furnace temperature control system for zirconium calcination	325
F W Febriardy Sutanto and A Abimanyu	525
Application of nuclear analytical techniques to assess air quality in Indonesia	326
M Santoso D D Lestiani S Kurniawati F Damastuti and LOsan	520
Simulation study for ion beam extraction of 150 keV/2mA ion implantor by using	327
SIMION 8.1	521
S.R. Adabiah Saefurrochman S. Munawaroh and S.R. Haniah	
Testing and evaluation of valocity selector control system of small angle neutron scattering	278
spectrometer	528
N Suparno Rharoto and A Patriati	
Development of drops mounted seriel comms monitoring system for environmental	220
radionualida autuaillanaa in DATAN	329
S Wide de A Abimenum and B Amilium	
S Wiaoao, A Abimanyu, ana K Apribra	220
Automation of mixing tank system in STTN-BATAN mini plant using DCS Centum VP	330
I Irwanio, D Harsono, ana Sulanio	221
v isualization of dose distribution inside soft A-ray machine based on USL technology	331
N Nagara	222
ince axis mining machine applications for weiding samples test neutron instrument using	552
Incuon sur weiding method	
M Saparuain, 1 H Priyanto, K Apriansyan, and K Muslih	

Performance analysis of digital X-ray radiography system in radiometallurgy installations	333
for pebble bed fuel imaging	
S Ismarwanti, H F Rahmatullah, R Artika, R Sigit, M K Ajiriyanto , and J Setiawan	
Neutronic analysis of comparation UN-PuN fuel and ThN fuel for 300 MWth Gas Cooled	334
Fast Reactor long life without refueling	
R D Syarifah, A Arkundato, D Irwanto, and Z Su'ud	
Transfer factor as indicator of heavy metal content in plants around Adipala steam power	335
plant	
D S Prabasiwi, Sukirno, S Murniasih, and K Rozana	
Characterization of suspended PM 2.5 and PM 10 concentration and radioactivity around	336
Rembang steam power plant	
Sukirno, S Murniasih, and D S Prabasiwi	
Real-time acquisition and correction of temperature effect in NaI(Tl) detector-based	337
environmental gamma radiation detection device	
I P Susila, Istofa, Sukandar, and B Santoso	
Applicability of EDXRF for elemental analysis in airborne particulate matter (APM):	338
assessment using APM reference material	
D K Sari, D D Lestiani, S Kurniawati, N Adventini, D P D Atmodjo, and I Kusmartini	
An interlaboratory comparison of INAA analytical method for coal fly ash elemental	339
characterization	
E Damastuti, M Santoso, S Yusuf, and Y N S Woro	
Assessment of natural radioactivity levels in soil sample from Botteng Utara Village,	340
Mamuju Regency Indonesia	
Nurokhim. Kusdiana, and E Pudiadi	
Determination of TRIGA 2000 reactor parameters for NAA absolute methods	341
S Kurniawati. D P D Atmodio. N Adventini. I Kusmartini. W Y N Svahfitri. D K Sari.	
E Damastuti, D D Lestiani, and M Santoso	
Characterization ionic species fine particulate samples in Indonesia by ion chromatography	342
I Kusmartini, N Adventini, S Kurniawati, D D Lestiani, E Damastuti, and D K Sari	
River water classification pattern in Malang city based on electronic tongue for	343
identification of environmental pollution	
I Tazi, S N Margareta, W Y Setvandita, H Muttamagin, S K Kullivana, A Muhaimin,	
and Muthmainnah	
Neutron activation analysis of natural dyes elements to minimize batik industry wastewater	344
L Indravani, M Triwiswara, IR Salma, and E Nuraini	5.1
Analysis of heat and mass transfer on cooling tower fill	345
A A R Hakim and E A Kosasih	
Verification of the output determination of 12 MeV electron beam from an elekta versa	346
HD/154714 linear accelerator machine at Mayapada hospital	
A F Firmansvah, O A Firmansvah, and Y S Asril	
An analysis of radiation worker safety at SAMOP facility PSTA-BATAN Yogyakarta using	347
MCNP6	
R Rivadi, Suharvana, F Anwar, Rivatun, and Soeparmi	
Modifikasi sistem iradiasi rabbit hidrolik reaktor serba guna G.A. Siwabessy (RSG-GAS)	348
berbasis OPC server dan labview	-
R Gusman, Sujarwono, dan A Abimanyu	

Ambient dose measurement from high natural background radiation (HNBR) in Botteng	367
Utara Village, Mamuju - Indonesia	
S N Shilfa, B Y E B Jumpeno, Nurokhim, and Kusdiana	
Design of gamma imaging system for small organs	368
W B Santoso, B Santoso, Sukandar, and L Yuniarsari	
Growth of ZnS:Ag:Cu thin film deposited on glass substrates using thermal evaporation	374
technique for alpha-photovoltaic	
E Mulyani, T Sujitno, D Purbandari, Ferdiansjah, and Sayono	
Validation of [99mTc]Tc-DTPA radiochemical testing method using one-system paper	375
chromatography	
A R Putra, E Lestary, Maskur, and Y Tahyan	
Study of microstructural and corrosion properties of aluminium alloy 7075 after plasma	376
nitriding	
H Ahmadi, R A Aziz, Suprapto, T Sujitno, and S Hapsari	
The effect of the gas mixture ratio on 316L stainless steel biomaterial's mechanical	377
properties and crystal structures using DC sputtering technique	
W Andriyanti, B Arsyad, Ravendianto, T Sujitno, Suprapto, and D Priyantoro	
Isotherm, thermodynamic, and kinetics studies of iodide adsorption on the Al_SBA-16	378
mesoporous nanomaterial as radiopharmaceutical vehicle candidate	
M C Prihatiningsih, S S Retnoasih, A E Andjioe, N A Kundari, and E G R Putra	
Functional test of electron beam extraction for pulse electron irradiator	379
I Aziz and B Siswanto	
Characterization of porosity inside limestone as a reservoir of oil using neutron tomography	380
B Bharoto, A Ramadhani, F Akbar, S G Sukaryo, T H Priyanto, M Kurniati,	
and F A Fadhila	
Synthesis TiO ₂ -Ag thin film by DC sputtering method for dye degradation	381
W Andriyanti, F Nurfiana, A N Sari, N A Kundari, and I Aziz	
Applied strain effect to the luminosity and divergence of neutron monochromator with fully	382
asymmetric diffraction	
M R Muslih, R Apriansyah, and Mikula	
Effect of drought stress on morphological, anatomical, and physiological characteristics of	383
cempo ireng cultivar mutant rice (oryza sativa l.) strain 51 irradiated by gamma-ray	
Y S Patmi, A Pitoyo, Solichatun, and Sutarno	
Synthesis of bio-polymer based chitosan and starch with methyl orange dyes as a material	384
potential for low dose gamma film dosimeter	
D Ariyanti and W Saputri	
Yield stability analysis of rice mutant lines using AMMI method	385
S Rahayu	
Analysis distribution of ³² P radioisotope in silicone patch using autoradiography scanner	386
W Y Rahman, E Sarmini, and A Pujiyanto	
Preparation of bio-composite hydrogel of hydroxyapatite based using gamma irradiation for	387
artificial bone	
B Abbas, D P Perkasa, Erizal, and F Lukitowati	
Preparation and characterization of collagen-ciprofloxacin HCL membranes produced using	388
gamma irradiation as a candidate for wound dressing	
F Lukitowati, B Abbas, Erizal, I W Redja, and H A Febryani	

Neutron tomography study of a lithium-ion coin battery	389
Y Purwamargapratala, Sudaryanto, and F Akbar	
The effect of chitosan radiation of spinach plant based on agronomy characteristics on	390
hydroponics floating system	
A K Dewi, D Z Z Aulya, and E Suryadi	
Neutron diffraction and the residual stress distribution of magnesium processed by equal	391
channel angular pressing	
M Rifai, Mujamilah, M R Muslich, Ridwan, M M Sarr, and H Miyamoto	
Investigation on neutronic properties of ZrC coated advanced TRISO fuel for high-	392
temperature gas-cooled reactors	
F Aziz, M Panitra, A K Rivai, M Silalahi, N Sabrina, M Dani, M B Setiawan,	
and T Setiadipura	
Self-diffusion coefficient of Fe, Pb, Ni and Cr by molecular dynamics simulation using the	393
potential morse	
L Ma'nun, A Arkundato, Misto, E Purwandari, and Sujito	
Improvement of bioethanol production in cornstalk fermentation through hydrolysis by	394
fungi Trichoderma reesei exposed to gamma rays	
N Mulyana, Tri R D Larasati, S Nurbayti, and Q A'yuni	
Design of low-flow oxygen monitor and control system for respiration and SpO ₂ rates	395
optimization	
A J Puspitasari, D Famella, M S Ridwan, and M Khoiri	
Elemental analysis of SRM 1547 peach leaves, 1573a tomato leaves, and 1570a spinach	396
leaves	
Alfian, S Yusuf, and Sutisna	
Iodine analysis of foodstuffs samples using epithermal instrumental neutron activation	397
analysis	
Sutisna, S Yusuf, and S Suprapti	
Preliminary study of scandium-46 labeled composite (hydroxyapatite - chitosan - collagen)	398
biodistribution in rats bone implant model	
A A Kurniawan, M B Febrian, Iswahyudi, I Daruwati, R J Sugiharti, Y Setiadi, D Darwis,	
B Abbas, F Lukitowati, and Y Warastuti	
Study of PMMA dosimeters response against storage temperature and post-irradiation time	399
R Fitriana and M A E Putri	
Synthesis and characterization of high chromium zirconiaoxide dispersion strengthened	400
(ODS) steel	
M Silalahi, B Bandriyana, S Ahda, B Sugeng, and A Dimyati	
Hydroxyapatite (HA) labeling with a phosphorus-32 radioisotope of the TRIGA 2000	401
reactor irradiation result as a candidate for radiosinovectomy therapy	
B S Rattyananda, M B Febrian, Y Setiadi, D Setiawan, A Aziz, T S Mulyati, and A Suherman	
Pharmacokinetics interaction study of ^{99m} Tc-glutathione radiopharmaceutical with	402
doxorubicin in mice (<i>Mus musculus</i>)	
T H A Wibawa, A Kurniawan, Iswahyudi, and I Daruwati	
Synthesis and characterization of magnetite (Fe ₃ O ₄) via radiolytic reduction method	403
F Alawiyah, Muflikhah, W Z Lubis, G T Sulungbudi, Mujamilah, and E G R Putra	

Optimization of the extraction process in the synthesis of high specific activity	404
Molybdenum-99 by Szilard Chalmers reaction	
M B Febrian, F N Fadhillah, and M Agma	
Synthesis and characterization of zeolite-g-polyacrylamide (Zeolite-g-PAAM) by using	405
simultaneous irradiation technique	
T Puspitasari, D Darwis, D S Pangerteni, O Oktaviani, and M P Sari	
The synthesis and characterization of rare-earth hydroxide as a processed result of	406
monazite sand	
Samin, K Setiawan, M Anggraini, and S T Sunanti	
Design of irradiation facilities at grid E-1 of plate type research reactor Bandung	407
E S Bahrum, H Wibowo, Y Setiadi, W Handiaga, P Basuki, A Maulana, and M B Febrian	
Analysis of nitrogen ion implantation on the corrosion resistance and mechanical properties	408
of aluminum alloy 7075	
S Hapsari, T Sujitno, H Ahmadi, Suprapto, and R A Aziz	
Synthesis of reduced graphene oxide modified Cu (rGO-Cu) by gamma irradiation and its	409
electroactive properties	
F Nurfiana, Giyatmi, and N Anggita	
Growth of TiN thin film on Al 5083 deposited using dc sputtering technique for improving	410
their hardness and corrosion resistance	
M A Gifari, W Andriyanti, A Haerul, and M I Rasyidi	
Labeled of irradiated chitosan with Iodium-131 radioisotope	411
E M Widyasari, M E Sriyani, R J Sugiharti, I Daruwati, B Abbas, D S Pangerteni,	
and D Darwis	
Analysis of neutron absorption from NBR rubber type without and with Gd and B ₄ C fillers	412
Juliyani, Setiawan, I Sumirat, GS Sulistioso, and A Mahendra	
Preparation of bacterial cellulose-based adsorbent by simultaneous irradiation method:	413
synthesis and characterization	
Oktaviani, T Puspitasari, D S Pangerteni, I Indriyati, and A L Yunus	
The effect of argon:oxygen gas ratio on the energy gap of nickel-chromium oxide thin film	414
deposited using DC sputtering techniques	
T U Agista, I Aziz, B Pribadi, and D Priyantoro	
Synthesis and characterization of photocatalist TiO ₂ doped with Ni for treatment of waste	415
model from nuclear facility	
A Rachminisari , A Salim , A Nana, and A Dimyati	
Physico-chemical characterization of the Terbium-161 radioisotope through separation	416
based on cartridge LN resin column from irradiated of enriched Gd ₂ O ₃ target	
A Aziz	
Charge ordering at low temperature in lithium manganese oxide spinel	417
TYS Panca Putra, M Yonemur, S Torii, and T Kamiyama	
Blood pressure monitoring system: real time-continuous and noninvasive-electronic, based	418
on magnetic dipole moment of the proton spin of hydrogen atoms in the blood	
B M E Jati, A B S Utomo, G Maruto, and Y R Utomo	
Neutronic analysis of critical assembly for moly-99 production reactor based on mixed	419
Th-U fuels	
B Delphito and Syarip	

Corrosion analysis of post-heat treatment and post-weld SS316 with electrokinetic	420
reactivation and cyclic polarization method	
M Kartaman A, E Nurlaely, A S D Putri, J Cs Sihotan, and N A Kundari	
Multiband electromagnetic wave absorption study on nanocrystalline	421
(1-x)NiFe2O4/(x)BaTiO3 composites	
E Sukirman, Y Sarwanto, S Ahda, Y Taryana, and S Purwanto	
Synthesis of zirconium oxychloride and zirconia low TENORM by zircon sand from	422
Landak West Kalimantan	
H Poernomo, Sajima, and N D Pusporini	
Tuning localized surface plasmon resonance (LSPR) of Au-Ag nanoalloys by femtosecond	423
laser	
A N Hidayah and Y Herbani	
Transfer factor of radiocesium from soil to spinach plant (<i>Amaranthus sp</i>)	424
P Sukmabuana, I G Pranawiditia, R Tursinah, and J Chussetijowati	
Morphology study of SPIONs coated apoferritin using small-angle neutron/X-ray scattering	425
and transmission electron microscopy	
A Patriati, W Z Lubis, N Suparno, S Soontaranoon, and Mujamilah	
Development of single sphere spectrometer with gold foil detector for neutron spectrometry	426
Rasito and Bunawas	
X-ray diffraction (XRD) profile analysis of pure ECAP-annealing Nickel samples	427
A D Prasetya, M Rifai, Mujamilah, and H Miyamoto	
Nitrate reductase activity of black rice (<i>oryza sativa l.</i>) cempo ireng cultivar strain 13 and 46	428
as the result of plant breeding using ⁶⁰ Co gamma ray on drought stress variation	
V P Putra, Solichatun, Sugivarto, and Sutarno	
Somatic embryogenesis on irradiated callus of garlic (Allium Sativum L.)	429
M Y Maryono	
Starch, amylose and amylopectin levels of M5 and M6 generations of black rice irradiated	430
by gamma ⁶⁰ Co ray	
R P Bachtari, S Listyawati, and Sutarno	
Preliminary study of iodine analysis in food using epithermal method of neutron activation	431
analysis in TRIGA 2000 reactor pneumatic system facility	
WYN Syahfitri, DD Lestiani, N Adventini, DP D Atmodjo, I Kusmartini, DK Sari,	
S Kurniawati, E Damastuti, and M Santoso	
Preparation and optimization of SBA-16-Al nanomaterials labeled Technetium-99m for	432
radiation imaging applications	
W Nuraeni, E G R Putra, I Daruwati, and M C Prihatiningsih	
The adsorption isotherm and thermodynamic studies of rhenium onto mesoporous silica	433
nanoparticles	
M C Prihatiningsih, K T Basuki, P Brawijaya, and A Saputra	
Separation the zircon mineral from tailing TiN mining using shaking table	434
Sajima, T Handini, Suyanti, and Sudaryadi	
Processing and refining of TiN tailing mining	435
N D Pusporini, Suyanti, R A Amiliana, and H Poernomo	
Effect of Gd substitution on the crystal structure, magnetic susceptibility and	436
biocompatibility of nano-sized Ca10-xGdx(PO ₄) ₆ (OH) ₂ particles	
Y A Hariyanto, Hartatiek, and A taufiq	

Hierarchical structure and antibacterial activity of olive oil based MZFe ₂ O ₄ ferrofluids	437
D Yuliantika, A Taufiq, and E G R Putra	420
Plants covering influence to the radioisotopes existence of ¹⁰ Cs and ²⁰ Pbex in the soil	438
N Sunartini, B Auyanta, and A Aanari Exclustion of exformed exceeded in the Contex for Anglied Nector Science	420
Evaluation of safeguards system implementation in The Center for Applied Nuclear Science	439
and Technology of BATAN for 2013 to 2019	
N Ratnaningsih, Nailatussaadah, and A Mediawan	110
An assessment of instructor quality in the BATAN management system assistance program	446
using the likert scale	
Sunarto, A R Kumaraningrum, Sarju, and Iswanto	
Safety analysis of the irradiation of Tellurium (Te) target in G.A. Siwabessy reactor Sutrisno, A A R Hakim, and Purwadi	451
Study of the requirements for external expert recruitment by nuclear energy regulatory agency (BAPETEN)	452
L Y Pandi	
Legal protection for malpractice patients of therapeutic transactions in nuclear medicine facilities	459
S Hadivantina, K Hadiwinata, and N Ramadhan	
Study on the implementation of radiation portal monitor certification in Indonesia	469
H Subekti and E Kunarsih	
The concept of smart classroom for nuclear technology training courses in BATAN	478
Bagivono	
Analysis of quality assurance of Irradiator Gamma Merah Putih products using dosing	488
mapping method	
B Saputro, A Rachmanto, and F H Setiawan	
Preliminary study of general safety requirements part 2 as a scope for BATAN integrated	499
management system	
B Saputro, A T Kusuma, Mujiono, and T S Sugiono	
The implementation of NKM in BATAN: the current status and challenges	508
Sutrasno	
Review of the management system integration scheme at CANST Bandung	515
Y Kurniati, Khasairin, and R Ekaputra	
Safety culture survey based on BATAN regulation No. 200/KA/X/2012 from 2014 to 2018	529
at multi purpose reactor (PRSG)	
W Prasuad, H Unggul, and S Slamet	
Utilization of IAEA e-learning course on neutron activation analysis for education and	536
training purposes	
Y T Handayani and Indragini	
Strengthening radiography personnel certification LSP – BATAN through the role of quality	545
assurance based on SNI ISO - IEC 17024: 2012	
B Hanurajie, R L Tyas, and B Santoso	
Building leadership competence for nuclear safety	550
R Alamsyah	
Standardization of security risk assessment in nuclear area	558
A B Purnomo, Sugiyarto and I H Purnomo	

SNI development: RSG-GAS as working standard of national research reactor temperature	563
measurement	
E P Hastuti, A B Purnomo, M Ayundiahrini, S L B Butar, Sudarmono, Sujarwono,	
H Suherkiman, and R Gusman	
Validation of personal certification through examination analysis	573
Siswoto, R L Tyas, A Meliana, and J Susanto	
The implementation of risk-based thinking based on ISO/IEC 17025 for the auditor at the	579
Center for Nuclear Standardization and Quality, National Nuclear Energy Agency of	
Indonesia	
D Listianti, Muhidin, Agus, and R L Tyas	
Study on knowledge management system in Indonesian Nuclear Energy Regulatory Agency	584
(BAPETEN)	
H Haditjahyono, L Hakim, and E Fitriyanti	
Safety study of topaz irradiation management at the in core RSG-GAS Position	594
E Sihombing and W Prasuad	
Review of radiochemistry capacity building program in Indonesia	595
Indragini and Y T Handayani	
Gamma radiation exposure profile based on the power variation of GA Siwabessy	603
multipurpose reactor in accordance with the extension of operation license	
Subiharto, N Kurniawan, and P Ramadania	
Improving the quality of nuclear process/product by creating Batan standards for	613
certification of nuclear process/product design competencies	
D Intaningrum, R L Tyas, A Meliana, and J Sutanto	
Standardization of calibration for temperature measurement in high-temperature nuclear	620
reactor	
A B Purnomo, E P Astuti, S L Butar – Butar, and M Ayundyahrini	
Managerial aspects of Nuclear Knowledge Management (NKM) in National Nuclear Energy	624
Agency of Indonesia	
J Sutanto, A B Purnomo, and P Sulisworo	
A study on radiation dose estimation of Argon-41 and Nitrogen-16 airborne released from	636
Kartini research reactor	
M Salam and E Suprihati	
Evaluasi operasional dosimetri dalam fasilitas Iradiator Gamma Merah Putih untuk radiasi	637
bahan	
P Sulisworo, J Sutanto, dan S Darmawati	
Formulation of technical competency dictionary for nuclear technology human resources	645
Bagiyono	
Safety radiation of sealed radioactive sources	656
M A Rahmadani, K Khotimah, A Meliana, and J Sutanto	
Basic design of Indonesia Nuclear Capacity Building for developing countries	660
S Ariyanto	
Licensing preparation for modification of Bandung TRIGA 2000 reactor utilize MTR type	670
fuel 2000 reactor utilize MTR type fuel	
E Nurlia and J S Pane	

Radiological safety assessment for recycle of contaminated scrap metal for building materials	683
M Romli, Mahmudin, T S H Nugroho, and W E Reputri	
Pengembangan sumber daya manusia berbasis kompetensi sebagai upaya meminimalkan	690
kecelakaan keria di PSTBM-BATAN	
Suvanto S Zanuar dan A Dimyati	
Development of online database application for optimized laboratory equipment information	698
system in the Center for Sciences and Technology of Advanced Materials (PSTBM)	070
Prenaration of personnal certification body (ISP) BATAN to implement the digital	707
radiography gualification and cartification personnal	/0/
Signation R Hammaila D Interminary and Umar	
The resplicitly of data acquisition transfer on Vertini internet reseter laboratory	712
L Divide U.S. Hidmit T.N.H. Sugarto, N.N.N. Aufani, and D. Satuia	/13
A conditation of DATAN nomen contification had a (LSD DATAN) come of contification	720
Accreditation of BATAN person certification body (LSP BATAN) scope of certification	/20
level 3 radiographers and nuclear engineering and application personnel to increase user	
trust	
Siswoto, Sutardi, and F Nurfuadia	700
Study on the effectiveness of the implementation of nuclear knowledge management	728
through e-repositories	
K Khotimah, R N Cahyani, A R Yusuf, and A Sungkono	
The current status of the internet reactor laboratory Kartini research reactor for distance	733
learning especially for higher education	
Taxwim, U S Hidayat, T H Susanto, M Subchan, E Sugianto, A F Anugerah, N Aufani,	
Z Baskoro, R Satria, and W Karsono	
Probability study of an airplane crash on the Kartini reactor site area	734
Z E Bhagaskara and N N Aufanni	
Evaluation of the officer's behavior in public services of nuclear minerals technology	735
N Madyaningarum and I H Pratama	
Kajian kegiatan litbang iptek nuklir untuk penetapan aspek penting lingkungan	736
Widjanarko, H Yasmine, dan A Ratih	
Kajian pengembangan laboratorium hewan terstandar biosafety level (BSL) di Badan	743
Tenaga Nuklir Nasional(BATAN)	
M V Sukarta dan R A Abiyyi	
Kajian evaluasi rencana strategis BATAN 2015-2019 dalam rangka penyusunan kebijakan	759
rencana strategis BATAN 2020-2024	
Y Garini dan D Irwanti	
Perancangan penggunaan data logger pada kualifikasi kinerja autoclave di fasilitas clean	767
room	
I W Widiana, H Suryanto, Rajiman, dan K Hidayat	
Analisis hasil penyusunan analisis jabatan di BATAN: studi kasus di Pusat Diseminasi dan	776
Kemitraan (PDK) dan Pusat Kajian Sistem Energi Nuklir (PKSEN)	
E Kristuti	
Pembuatan perangkat uji alarm seismik untuk meningkatkan keselamatan operasi reaktor	791
RSG-GAS	
H Prijanto dan H Suherkiman	
-	

Simulasi pembuatan aplikasi managemen sumber radiasi pada Laboratorium Instrumentasi 799 Nuklir Sekolah Tinggi Teknologi Nuklir (STTN) *M S Rahman dan H Hamadi*

Determination of the width of gamma radiation field of the OB-85 (¹³⁷Cs source) at calibration facility of PTKMR-BATAN

Nazaroh^{1,*}, O A Firmansyah¹, A F Firmansyah¹, and A Afham¹

¹Center for Safety and Radiation Metrology Technology – National Nuclear Energy Agency (BATAN), Jl. Lebak Bulus Raya No.49 Jakarta 12440, Indonesia

E-mail: nazaroh s@batan.go.id

Abstract. The OB-85 is one of the main equipments for calibration of Gamma Radiation Measuring Instrument's (RMIs, such as Surveymeter, TLD, pocket dosimeter) at Calibration Facility of PTKMR-BATAN, however, without standard instrument and other supporting tools, the OB-85 will not function properly. To get an accurate calibration result, the width of radiation field of the OB-85, the Air Kerma rate, K_a [µGy/h], the Ambient Equivalent Dose rate, H*(10) [µSv/h], the Personal Equivalent Dose rate, Hp (10) $[\mu Sv/h]$, the Exposure rate, X [mR/h], and the expanded uncertainty, u_{expand} of these quantities must be measured and determined as they are indispensable for calibration or irradiation of the RMIs . The purpose of determining of the width of radiation field of the OB-85 is to fulfil quality audit of the Calibration Facility, for ascertaining what the actual width of radiation field of the OB-85, belong to the PTKMR-BATAN. At the time of calibration, surveymeter or pocket dosimeter must be placed at the center of radiation field and in the width of radiation field because if it was partially outside of the radiation field then the calibration result was inaccurate. This paper presents the determination of the width of radiation field of the OB-85 by three types of ionization chamber detectors. with different shapes and volumes, with two settings of SDD (Source Detector Distance). The width of radiation field of the OB-85 measured by the IC/SN #M23332, IC/TK-30 #SN107, and IC Exradin/A4 were 18 cm for SDD = 50 cm, and 36 cm for SDD = 100 cm. From this experiment, the information was obtained that the width of radiation field of the OB-85 does not depends on the type of the detectors used to measure but it depends on the calibration facility settings (the shape or geometry of the source, SDD, and diameter of collimator).

1. Introduction

The Secondary Calibration Laboratory Network has been set up by the IAEA in many countries, including Indonesia (SSDL-Jakarta). In the beginning, it was set-up standard therapy but gradually with the development of science and knowledge of nuclear engineering, a calibration laboratory for a radiation protection level is also needed.

Regulation of the Head of the Nuclear Energy Supervisory Agency Number 1 of 2006 concerning Dosimetry Laboratory, Radiation Measurement Calibration Instrument and Radiation Source Output, and

Radionuclide, in Article 7 states that the National Level Laboratory (NLL) is responsible for fostering and providing technical guidance to the Secondary Standard Dosimetry Laboratory (SSDL) and the Tertiary Standards Dosimetry Laboratory (TSDL) and in article 10 it is said that for a new of RMIs or after being repared, the RMIs must be calibrated before used and must be recalibrated every year. This is to ensure that the RMIs works properly, according to its designation and is traced to higher laboratories (national and international) [1,2].

The Gamma Calibration Facility of PTKMR-BATAN which is an IAEA assistance, currently only uses ¹³⁷Cs (OB-85) and ²⁴¹Am sources for Gamma RMIs calibration. In 1985, there were three sources installed in the Calibration Facility of PTKMR-BATAN namely ²²⁶Ra. ¹³⁷Cs, and ⁶⁰Co. At the moment, ⁶⁰Co was very low its activity because the half-life of ⁶⁰Co was 5.27 years [3], while the shutter for ²²⁶Ra was broken.

¹³⁷Cs has a half-life of about 30.17 years, it decays to ¹³⁷Ba by emitting 0.6617 MeV of gamma energy, with the decay chart presented in Figure 1a and its Spectrum presented in Figure 1b. Because of its long half life, ¹³⁷Cs are widely used for various specific purposes, for example as a Radiation Measuring Instrument (RMIs) calibrator, in the field of medicine, it used for diagnosis and radiation therapy, in the Industry, it is used as a flow meter, for measuring thickness, leveling, and density of fluid [3,4].

Figure 1. (a) Decay scheme of ¹³⁷Cs, (b) Spectrum ¹³⁷Cs

The ¹³⁷Cs source used as the RMIs Calibrator in PTKMR BATAN Calibration Facility is OB-85, made by Buchler GmbH, with the activity was 74 GBq, at Reference Time: May 1985 (Figure 2a). The OB-85 was placed in the middle of the calibrationfacility, about 2 m from the door. The calibration table can be adjusted from 0.5 m to 4.5 m from the OB-85. Laser alignment was mounted on the wall of the calibration room, about 9.5 m away from the source, facing the source, OB-85. The meter was mounted on the wall to the right of OB-85, with the zero point exactly at the source position. The telescope is mounted on the calibration table, left of OB-85, to adjust Source Detector Distance (SDD) and central of the detector. Pressure, Temperature, and Humidy meter (P, T, H) were mounted on the wall to the right of OB-85. The Calibration Room of PTKMR-BATAN was presented in Figure 2. Calibration/irradiation of the RMIs were controlled from the control room. Room conditions are recorded when taking measurement/calibration data. Proceeding of International Conference on Nuclear Capacity Building, Education, Research and Applications (I-Concern'19)

Figure 2. The Calibration Room of PTKMR-BATAN

For the purposes of Quality Audit of the RMIs Calibration Facility and for the National Accrediation Committee (NAC), the width of the OB-85 source radiation field must be known exactly, as well as the Air Kerma Rate, K_a , Personal Equivalent Dose Rate, Hp (10), Ambient Equivalent Dose Rate, H* (10), and the Exposure Rate, X at several calibration points because these quantities are needed in the calibration activities. This information is very useful when performing RMIs calibration or TLD irradiation.

In this paper, determination of the width of radiation field of the OB-85 has been done, using 3 types of ionization chamber detectors: Ionization Chamber/SN #M23332, cylindrical shape, volume 0.3 cc, IC/TK-30/SN107, spherical shape, volume \pm 30 cc and Exradin/A4, ball shape, volume 30 cc.

2. Method

2.1. Detector stability

To do a measurement, the detector must be checked firstly. The detector of IC was connected to electrometer and turned ON and let them \pm 30 minutes to warm up. To check the stability of the instrument, it can be used the available ⁹⁰Sr check source. To determine the stability of the detector, a Standard Operational Procedure (SOP) was required, for example, determine the stability of the he stability check is within the range of \pm 1%, then we consider that the detector was stable and ready for measurement.

Control Charts should be made every year to see the stability of the detector because this is very important for quality control (QC) and it is needed when there is an assessment from the National Accreditation Committee (NAC). This stability range will contribute to the measurement/calibration uncertainty. For evaluation of QC's detector stability, the equations (1) and (2) can be used.

$$B_{t} = B_{i}. e^{-(0.693 \text{ xt})/T}$$
(1)

Stability =
$$\frac{B_t - B_i}{B_i} x 100\% \le 1\%$$
 (2)

- B_t : Detector reading of check source at time t
- B_i : Detector Reading of check source in the first time
- $T_{1/2}$: Half-life of check source, $T_{1/2}$ (⁹⁰Sr) = 28.7 years
- t : Time difference between B_i and B_t

2.2. Detector repeatability

Repeatability: is the ability of a measuring instrument to show the same results from a measurement process that is repeated and identical. Repeatability of the detector, can be seen from the results of repeated measurements. Repeatability is the standard deviation of the measurement. If the results of repeated measurements in the range of \pm 1%, the repeatability is good. This repeatability will contribute to the measurement/calibration uncertainty.

2.3. Determination of the width of the radiation field of the OB-85

To determine the width of radiation field of the OB-85, we should have a Standard Operational Procedure (SOP) for limiting the saturation curve / peak measurement within a certain range, for example $\pm 2.7\%$. In that range, we consider it is still within the wide range of the radiation field. To get that range, the measurement results are normalized to the central position. If the reading of the measuring instrument is still in the range of $\pm 2.7\%$, then we consider that it was in the range of the width of the radiation field.

After checking the stability and repetability, the detector -1 can be used to determine the width of radiation field of OB-85. Detector-1 was .placed at the central source of OB-85 with SDD 50 cm. The data was taken 5 data at each measurement point. The detector was moved every 2cm to the right, and the data collection is done in the same way, until a significant decrease in reading occurs. Measurements are made to the left of the source's central point, until a significant reading decrease is obtained. Measurements are also made at SDD of 100 cm with the same steps. Determination of the field width of the OB-85 was also carried out using detectors 2 and 3. After obtaining the data, an evaluation was conducted.

2.4. Measurement of Air Kerma Rate, \check{K}_a [2]

The air Kerma rate. \check{K}_a of the OB-85 was measured using calibrated Ionization chamber [5,6], at the reference point along the X-axis of the radiation field. For the calculation of air kerma rate, it can be used equation (3) under standard STP conditions (20°, 101.3 kPA). If the conditions are not standard, the correction shoeld be done using equation (4).

$$\check{K}_{a} = M \times N_{k} \times K_{PT}$$
(3)

$$K_{\rm PT} = \frac{1013,25}{P} \times \frac{1+273}{293,15} \tag{4}$$

- M : The average reading of a dosimeter/electrometer
- N_k : Calibration Factor for the detector [μ Gy / nC]
- K_{PT} : Pressure and Temperature Correction Factors

2.5. Uncertainty in Measurement of Air Kerma Rate [9, 10, 11, 12]

All measurement instruments have an uncertainty value associated with the measurement. This uncertainty can vary from time to time. The measurement results can only be declared true if the value of the measured is provided with a deviation limit from the measurement results. Tolerance or deviation limit is known as uncertainty.

For the calculation of the uncertainty of Air Kerma Rate, the ISO-Guide to the Expression of Uncertainty of Measurement can be used [9, 10, 11, 12]. Basically, measurement uncertainty can be grouped into Type A and Type B. Type A, evaluated by the statistical method while type B is evaluated by other methods, usually Type B uncertainty data comes from the calibration certificate of the equipment used.

The measurement uncertainty related to the Air Kerma Rate, \check{K}_a is calculated from equation (3).

Proceeding of International Conference on Nuclear Capacity Building, Education, Research and Applications (I-Concern'19)

$$K_a = M x Nk x KPT$$
(3)

The related parameters used to calculate the combined uncertainty were standard uncertainties of M, u_M (Type A), standard uncertainties of calibration factor, u_{NK} , standard Uncertainty of thermometer, u_T and barometer, u_{bar} . Standard uncertainty of meter, u_m ; standard uncertainty of timer, u_t ; standard uncertainty of distance, u_D .

The combined uncertainty of Air Kerma Rate was:

$$(u_{c})^{2} = (c_{1}u_{1})^{2} + (c_{2}u_{2})^{2} + (c_{3}u_{3})^{2} + (c_{4}u_{4})^{2} + (c_{5}u_{5})^{2} + (c_{6}u_{6})^{2})^{2}$$

$$(u_{c})^{2} = (c_{M}u_{M})^{2} + (c_{NK}u_{NK})^{2} + (c_{P}u_{P})^{2} + (c_{T}u_{CT})^{2} + (c_{t}u_{t})^{2} + (c_{D}u_{D})^{2}$$
(5)

$$c_1 = c_M = \frac{\partial K}{\partial M} - \frac{N_k K_P K_T}{t}$$
(6)

$$c_2 = c_{NK} = \frac{\partial K}{\partial N_F} = \frac{MK_P K_T}{t}$$
(7)

Pressure Correction Factor
$$=\frac{1013,25}{P}$$
, $c_3 = c_{P=}\frac{\partial_K}{\partial_P} = -\frac{1013.25}{P^2} x K_T x M x \frac{N_K}{t}$ (8)

Temperature correction factor $\frac{T+273}{293,15}$, so $c_4 = c_T = \frac{\partial K}{\partial T} = \frac{1}{293,15} x K_P x M x \frac{N_K}{t}$ (9)

$$c_5 = c_t = \frac{\partial K}{\partial t} = M_X N_k X K_P X \frac{K_T}{t^2}$$
(10)

$$c_6 = c_D = \frac{\partial K}{\partial D} = \frac{2}{D^3}$$
(11)

Finally, u_c can be calculated using equation: (5), (6), (7) to..... (11) and u_M from measurement (type A), U_{NK} , U_P , U_T . U_t , U_D can be obtained from certificate (type B).

Furthermore, the degree of effective freedom, v_{eff} is calculated using equation (12)

$$v_{\rm eff} = \frac{u^2(Y)}{u_i^4/v_i} \tag{12}$$

Finally, the expanded uncertainty, U_{exp} (\check{K}_a) was calculated using equation (13)

$$U_{\text{expanded}}\check{K}_{a}) = k x u_{c} (\check{K}_{a})$$
(13)

K: coverage factor, k depends on veff, use confidence level (CL) 95%.

3. Working Procedure

- 3.1. Material and Equipment
- Source ¹³⁷Cs (OB-85) made by Buchler GmbH, activity 74 GBq (May 1985), with shielding, collimator, and control panels (shutter and timer)
- Check-source: ⁹⁰Sr/No:23261/035 to check detector stability
- IC Detector/M23332/SN #204, volume 0.3 cm³, cylindrical and Keithley/PTW Unidos
- IC Detector, Exradin A4, ball, volume 30 cc and electrometer Keithley #6487 (Figure 3i)
- IC Detector TK-30/SN #107, spherical, and PTW Unidos Webline/T10001/11814
- Calibration table, meter, telescope and laser alignment (Figure 3a)
- Measuring devices (room temperature, pressure, humidity) meter (Figure 3b)

In Figure 3a; 3b; 3c; to 3i are the equipments used to determine the width of radiation field of the OB-85 at Calibration Facility in PTKMR-BATAN.

Figure 3. (a) ¹³⁷Cs (OB-85) in the shielding and collimator, (b) The device for measuring temperature, pressure and humidity, (c). Telescope for adjusting the detector's position, (d) *Laser alignment* for aligning detector's positions with respect to sources, (e) Setting the measurement of the radiation field width of the OB-85 field, (f) Unidose Webline PTW, control panel and electrometer, (g) Ionization Chamber Detector TK-30 / SN # 107, (h) electrometer Keithley #6487, and (i) Detector Exradin A4

3.2. Detector repeatability

Tables 3. and 4. present the repetability of the detector in the radiation field measurements at detector positions 0, 2, and 4 cm from the central, at SDD = 50 cm and at the detector position: 0, 4, 8 cm from the central, at SDD 100 cm.

3.3. Determination of the width of the radiation field

To find out the width of radiation field of the OB-85 using the three types of Ionization Chamber, the equipment settings as shown in Figure 2e. The detector was placed on a calibration table using statips, adjusting the height so that the radiation field hits the center of the detector. The detector is placed in front of the source (in the central position) at the Source Detector Distance (SDD) = 50 cm, with the help of laser alignment.

The detector is connected to a Unidose PTW electrometer/Keithley electrometer, depending on the type of detector and its connector. For M23332/SN #204 detector, the working voltage is set at 400 volts. As for the TK-30/SN #107 detector, the working voltage is set at 300 volts. At each detector, the device was heated for 30 minutes to get an electronic balance.

Source ¹³⁷Cs (OB-85) is opened by pressing the button on the control panel. Gamma radiation from ¹³⁷Cs will travel in the air and hit the Ionization chamber detector. Gamma radiation that interacts with air in the detector, will ionize the air and will produce an ionization current. The ionization current was measured by the Unidos Webline PTW electrometer/Keithley electrometer. From each measurement position, 5 data were taken. The position of the detector is shifted from central to right and left every 2 cm for SDD = 50 cm and 4cm for SDD = 100 cm. Average current data obtained at detector position: $0; \pm 2; \pm 4 \dots \pm 20$ cm (SDD = 50 cm) and the average current data at the detector position: $0; 4; 8 \dots 40$ cm (SDD = 100 cm), was plotted and presented in Figure 4b; 4c; 4d, and 4e.

3.4. Air Kerma Rate, Ambient Equivalent Dose Rate and Exposure Rate

The Table 5. presents the Reference value of OB-85 output (Air Kerma Rate, K_a, Personal Equivalent Dose rate, Hp (10), Ambient Equivalent Dose Rate, H* (10) and Exposure Rate), X at SDD 50, 100 and 200 cm, with Reference Time: August 7, 2019. This Reference Value is used as a comparison in determining of RMIs Calibration Factor (CF). CF = $\frac{Reference Value}{RMI Reading}$ [IAEA / SRS-16-2000]. Based on the gamma of RMIs calibration SOP, if the CF is in the range of 0,8-1.2, a Calibration Certificate will be issued.

3.5. Uncertainty in Measurement of Air Kerma Rate [9,10, 11, 12]

The mathematical equation (3) can be used to calculate the air Kerma rate, Ka.

$$K_a = M \times N_k \times K_{PT}$$
(3)

Mathematical equation (5) can be used to calculate the combined uncertainty of the Air Kerma rate, u_c (K_a).

$$u_{c}^{2}(K_{a}) = (c_{M}u_{M})^{2} + (c_{NK}u_{NK})^{2} + (c_{P}u_{P})^{2} + (c_{T}xu_{CT})^{2} + (c_{t}u_{t})^{2} + (c_{D}xu_{D})^{2}$$
(5)

The degrees of effective freedom, v_{eff} is calculated by equation (12).

$$v_{\rm eff} = \frac{u^2(Y)}{u_i^4 / v_i}$$
(12)

Finally, the expanded uncertainty, $_{Uexp}(K_a)$, can be calculated using equation (13).

$$U_{exp}(K_a) = k x u_c(K)$$
(13)

k: coverage factor, it depends on the v_{eff} , k for confidence level (CL) 95%.

4. Result and Discussion

In Figure 4a, The Schematic for measuring the width of radiation field of OB-85 was set-up. From this schematic, we get the information that the more radiation field will we get if the more diameter of the collimator and the more of SDD (Source Detector Distance).

In Figure 4b, 4c and 4d, the width of radiation field of the OB-85 were obtained, they were 18 cm for SDD = 50 cm, and 36 cm for SDD = 100 cm, using the Ionization chamber/SN #M23332, TK-30/SN #IC107 and Exradin A4. The results are a little less symmetrical. This may be because of the position of the source (inside the collimator) slightly to the right. By getting this information, the calibration operator should place calibration object (surveymeter or APD) in this radiation field range. If the RMIs exceeds 18 cm, use SDD more than 50 cm, so the width of radiation field was more than 18 cm. where D₁, D₂, D₃ are collimators, diameter 1, 2 and 3 are 2, 4, 8 cm, respectively. S₁, S₂ are distance of source to collimator 1 and 2 which are 6 and 8 cm. SDD₁, SDD₂ are source detector distance 1 and 2 whics are 50 and 100 cm, respectively.

At SDD = 50 cm, the average current measured by the IC detector M23332 was $(27.99 \pm 2\%)$ pA and at SDD = 100 cm, the average current was $(7.43 \pm 1.4\%)$ pA, see Table 2 and 3, column 4, at one standard deviation.

In Figure 4c. at SDD = 50cm, the average current measured by the IC TK-30/SN #107 was (24.72 \pm 1.7%) pA, and at SDD 100 cm, the measured current was (6.49 \pm 2%) pA, at one standard deviation. In Figure 4d. at SDD = 50cm, the average current measured by the IC Exradin A4 was (25.88 \pm 2.7%) pA, and at SDD 100 cm, the measured current was (6.76 \pm 2.3%) pA, at one standard deviation.

By using three types of Ionization Chamber detectors, it was obtained that the width of radiation field of the OB-85 was 18 cm and 36 cm, at SDD = 50 cm and 100 cm, See Table 1. The width of radiation field was not depending on the kind of the detector used to be measured but it depends on the geometry of the source, collimator, and SDD (Source Detector Distance) (see Figure 4a).

In Figure 4d, at SDD = 50 cm and SDD=100 cm, the width of radiation field of the OB-85 was presented, that are 18 cm and 36 cm, measured by three types of detector. Tables 2 and 3 present the repeatability for the three types of Ionization chamber detectors. The repeatability of the three types of detectors is less than 1%. These data are obtained from measurements of the width of the radiation field at SDD = 50 cm, at the position of the detector (0-4) cm from the source center and (0-8) cm at SDD = 100 cm, the detector's repeatability is quite good/quite small, but it will contribute to uncertainty in the calibration of the radiation gauge.

Figure 4. (a)The Schematic for measuring the width of radiation of the OB-85, (b) The width of radiation field of OB-85 measured by IC Ionization chamber of M2333, (c) The Width of Radiation Field of OB-85 measured by IC TK-30/SN #107, (d) The width of radiation field of the OB-85, measured by the Exradin A4, and (e) The width of radiation field of the OB-85 Measured by three types of the detectors

Horizontal position		TK-30/107		EXRA	DIN/A4	M23332		
		[]	DA]	[F	[pA]		[pA]	
SDD=50c	SDD=100c	SDD=50c	SDD=100c	SDD=50c	SDD=100c	SDD=50c	SDD=100c	
m	m	m	m	m	m	m	m	
-8	-16	24.00	6.40	25.42	6.67	27.51	7.23	
-6	-12	24.41	6.50	25.87	6.76	27.97	7.35	
-4	-8	24.73	6.49	26.32	6.85	28.28	7.47	
-2	-4	25.16	6.60	26.34	6.86	28,47	7.5	
0	0	25.20	6.63	26.36	6.91	28.63	7.53	
2	4	25.06	6.60	26.35	6.85	28.46	7.53	
4	8	24.92	6.56	26.35	6.86	28.31	7.48	
6	12	24.68	6.52	25.98	6.80	28.16	7.41	
8	16	24.33	6.43	25.60	6.69	27.78	7.34	
10	20	23.30	6.18	24.18	6.37	26.80	7.05	
Ave	Average =		6.49	25.88	6.76	27.99	7.43	
Stdev =		0.41	0.13	0.69	0.16	0.56	0.10	
Stdev (%) =		1.7	2.0	2.7	2.3	2.0	1.4	
The width of radiation field of OB-85		18 cm	36 cm	18 cm	36 cm	18 cm	36 cm	

Table 1. Radiation Field	of the OB-85 measured by the	hree types of ionization	chamber detectors	and keithley
	electrometer at S	DD 50 and 100 cm		

Table 2. The Repeatability of three types of ionization chambers for current measurement of the OB-85 in the range
of radiation field of (0-8) cm, at SDD = 100 cm

	I(EXRADIN/A4) pA		I(TK-30//SN#107) pA			I (M-23332/0,3 cc) pA			
Detector position	0	4	8	0	4	8	0	4	8
(cm)	6.89	6.87	6.86	6.60	6.60	6.55	7.55	7.55	7.50
	6.90	6.86	6.86	6.60	6.50	6.50	7.55	7.55	7.45
	6.91	6.85	6.85	6.65	6.55	6.60	7.50	7.50	7.45
	6.92	6.84	6.86	6.60	6.60	6.55	7.50	7.50	7.50
	6.92	6.84	6.86	6.70	6.65	6.60	7.55	7.55	7.50
Average	6.91	6.85	6.86	6.63	6.60	6.56	7.53	7.53	7.48
Stdev (%)	0.46	0.14	0.48	0.63	0.41	0.42	0.36	0.36	0.37
Repeatability	Goo	od (below	1%)	Go	od (below	1%)	Go	od (below	1%)

Table 3.	The Repeatability of three types of ionization chambers for current measurement of the OB-85 in the range
	of radiation field of $(0-4)$ cm at SDD = 50 cm

	EXRADIN/A4		TK-30//SN#107			М-23332/0,3 сс		сс	
Detector Position	0	2	4	0	2	4	0	2	4
(cm)	26.31	26.35	26.34	25.20	25.00	24.90	28.60	28.50	28.30
	26.32	26.35	26.35	25.25	25.05	24.85	28.55	28.50	28.35
	26.31	26.35	26.35	25.15	25.00	24.95	28.75	28.45	28.30
	26.32	26.35	26.36	25.20	25.15	24.95	28.65	28.35	28.30
	26.53	26.35	26.36	25.20	25.10	24.95	28.60	28.50	28.30
Average	26.36	26.35	26.35	25.20	25.06	24.92	28.63	28.46	28.31
Stdev (%)	0.24	0.02	0.75	0.18	0.36	0.11	0.26	0.23	0.08
Repeatability	Good (below 1%)		Good (below 1%)		Good (below 1%)				

SDD		Wit		
r [cm]	K _n [µGv/h]	Нр (10) [µSv/h]	Н*(10) [µSv/h]	X [mR/h]
 50	103672	125444	124408	11820
100	25918	31361	31102	2955
200	6480	7840	7775	739

Table 1 The Out	put of OB-85 RT Augus	t 7 2010 at the G	amma Calibration Fa	cility in PTKMR_BATAN
Table 4. The Out	put of OD-05 KT. Augus	st 7, 2019 at the G	annna Candiation Fa	CHILLY III F I KIVIK-DATAIN

The output of OB-85 in Table 4 was used for calibration of gamma RMIs (Surveymeter and APD). If the surveymeter reading unit is μ Gy/h, use the Air Kerma rate. Surveymeter was put at SDD 50, 100 or 200 cm, it depends on the maximum reading of the Surveymeter (SM). If the maximum reading was 10,000 μ Gy/h, the calibration should be carried out at SDD 200 cm. If the unit of SM reading is μ Sv/h, use the reference reading of the ambient equivalent dose rate, H*(10) μ Sv/h. Calibrate the SM at SDD 50, 100 or 200 cm. depending on the maximum reading of the SM. If the maximum reading was 10,000 μ Sv/h, then the calibration should be carried out at SDD 200 cm.

If the RMIs reading unit is mR/h, use the reference reading of Exposure rate, X. Perform calibration at SDD 50, 100 or 200 cm depending on the maximum RMIs reading. If the maximum reading wais 1000 mR/h, then calibration should be carried out at SDD 200 cm.

The uncertainty of RMIs calibration depends on the magnitude of Type A and Type B uncertainties. The Calibration Factor of RMIs = $\frac{Reference Reading}{Reading of RMI}$. The Reference Reading has uncertainty, u_{Ref} and the reading

of RMIs has uncertainty, u_{RMI} . So, the combined uncertainty of CF, u_c (CF) = $\sqrt{u_{Ref}^2 + u_{RMI}^2}$. And the U_{exp}

= k x u_c, k = coverage factor.

The combined uncertainty value is useful in knowing the level of success in taking measurements. If the type A uncertainty value is too large there is the possibility of the measurement was wrong or the equipment used does not match the range, if there is such a case then the measurement must be repeated in various ways, for example repeating the measurement several times or replacing experimental devices with tools that have a higher accuracy limit (more accurate).

5. Conclusion

To determine the width of the radiation field of the OB-85, stability and repeatability check of the detector should be performed. Determination of the width of the OB-85 was done by three kind of IC. The width of radiation field of the OB-85 was 18 cm for SDD = 50 cm and 36 cm for SDD = 100 cm. The width of the radiation field does not depend on the type of detector used to measure but it depends on the set-up of calibration facility, geometry/shape of source, diameter of collimator, and SDD.

Acknowledgment

The authors thank to the Head of Radiation Metrology Division and the Head of PTKMR-BATAN for their cooperation in allowing the author and colleagues to do this research.

References

 Peraturan Kepala Badan Pengawas Tenaga Nuklir Nomor 1 (2006) tentang Laboratorium Dosimetri, Kalibrasi Alat Ukur Radiasi Dan Keluaran Sumber Radiasi Terapi, dan Standardisasi Radionuklida BAPETEN Jakarta.

- [2] Safety Report Series No. 16, (2000), Calibration of Radiation Protection Monitoring Instruments, IAEA, Vienna, Austria.
- [3] IAEA Safety Standards for Protecting People and the Environment, (2011), Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards, Interm Edition, A General Safety Requirements Part 3, No. GSR Part 3 (Interim), IAEA, Vienna.
- [4] Joint Committee for Guides Metrology (JCGM 107) Evaluation of measurement data Applications of the least-squares method (ISO/IEC Guide 98-5), IAEA, Vienna, Austria.
- [5] Anonymous, "Ionization Chambers". (2017), Health Physics Historical Instrumentation Collection. Oak Ridge Associated Universities. *Retrieved 16 April 2017*.
- [6] Anonymous, Ionization chamber, From Wikipedia, (2019). the last edited on 20 May 2019, at 06:42 (UTC).
- [7] G. RAJAN, J. IZEWSKA, (2000), Radiation Monitoring Inatruments, International Atomic Energy Agency, Austria.
- [8] R. Redus, (2018), Fundamentals of Radiation Detection & Measurement, *Retrieved* Jan. 2018.
- [9] V. Lewis, M. J. Woods, Peter Burgess, Stuart Green, John Simpson, Jon Wardle, (2005), Measurement Good Practice Guide No. 49, The Assessment of Uncertainty in Radiological Calibration and Testing, NPL, Teddington, UK.
- [10] JCGM 100: (2008), GUM 1995 with minor corrections Evaluation of measurement data Guide to the expression of uncertainty in measurement, IAEA, Vienna, Austria.
- [11] ISO 4037-4: (2019), Radiological Protection X and gamma reference radiation for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy
 Part 4: Calibration of area and personal dosemeters in low energy X reference radiation fields, IAEA, Vienna, Austria.
- [12] IAEA-TECDOC-1585, (2008), Measurement UncertaintyA Practical Guide for Secondary Standards Dosimetry Laboratories, IAEA, Vienna, Austria.