Abstract
Uranium wastewater treatment has been performed by adsorption method using Mg(OH)2-impregnated activated carbon. Research purposes are to determine (i) uptake capacity of the adsorption isotherm of uranium in Mg(OH)2-impregnated activated carbon, (ii) mathematical correlation of uranium (VI) adsorption rate, and (iii) effect of the impregnation ratio of adsorbent to uranium removal efficiency. Adsorbent was synthesized through several stages, i.e., pyrolysis of coconut shell (400 °C), chemical activation using NaOH, and impregnation process using varied solutions of MgCl2 (600 °C). The materials were characterized comprehensively using FTIR, BET, XRF, and XRD. The parameters studied in this research were adsorption temperature (T), average particle diameter of adsorbent (d), mass ratio of adsorbent to wastewater solution (r), and impregnation ratio of Mg(OH)2/activated carbon. The results shown that equilibrium data are well fitted with the Langmuir isotherm model with the maximum adsorption capacity about 85 mg/g at 303 K and dimensionless constant separation factor (RL) value about 0.7. The adsorption rate was increased by increasing the adsorption temperature, mass ratio of adsorbent to wastewater solution, and the decrease of particle diameter of adsorbent with mathematical equation of the uranium (VI) adsorption rate as:
In addition, the results also shown that increasing the impregnation ratio from 0.3 to 1.0 can increase the uranium removal efficiency up to 67.3%.
This is a preview of subscription content, log in to check access.
References
Abbasi, W. A., & Streat, M. (1994). Separation science and technology adsorption of uranium from aqueous solutions using activated carbon. Separation Science and Technology, 29(9), 37–41. https://doi.org/10.1080/01496399408005627.
Abbasi, W. A., & Streat, M. (1998). Sorption of uranium from nitric acid solution using Tbp-impregnated activated carbons. Solvent Extraction and Ion Exchange, 16(5), 1303–1320. https://doi.org/10.1080/07360299808934581.
Adiningtyas, A., & Mulyono, P. (2016). Kinetika Adsorpsi Nikel (II) dalam Larutan Aqueous dengan Karbon Aktif Arang Tempurung Kelapa. Jurnal Rekayasa Proses, 10(2), 36. https://doi.org/10.22146/jrekpros.33335.
Apriliani, A. (2010). Pemanfaatan Arang Ampas Tebu sebagai Adsorben Ion Logam Cd, Cr, Cu dan Pb dalam Air Limbah. Skripsi, 1–63. https://doi.org/10.1016/j.actbio.2011.09.032.
Benedict, M., Pigford, T. H., & Levi, H. W. (1981). Nuclear chemical engineering (second.). United States: McGraw-Hill Book Company.
Chen, C. Y., Lin, C. I., & Chen, H. K. (2003). Kinetics of adsorption of β-carotene from soy oil with activated rice hull ash. Journal of Chemical Engineering of Japan. https://doi.org/10.1252/jcej.36.265.
Fujiwara, K., Yamana, H., Fujii, T., Kawamoto, K., Sasaki, T., & Moriyama, H. (2005). Solubility product of hexavalent uranium hydrous oxide. Journal of Nuclear Science and Technology, 42(3), 289–294. https://doi.org/10.1080/18811248.2005.9726392.
Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451–465. https://doi.org/10.1016/S0032-9592(98)00112-5.
Ilmi, M. M., Khoiroh, N., Firmansyah, T. B., & Santoso, E. (2017). Optimasi Penggunaan Biosorbent Berbasis Biomassa: Pengaruh Konsentrasi Aktivator Terhadap Luas Permukaan Karbon Aktif Berbahan Eceng Gondok (Eichornia Crossipes) Untuk Meningkatkan Kualitas Air. Jurnal Teknik Mesin, 6(2), 69. https://doi.org/10.22441/jtm.v6i2.1193.
Khoriatin, I. W. (2014). Mekanisme dan Termodinamika Adsorpsi Zeolit Alam Teraktivasi Untuk Pengolahan Limbah Uranium. Sekolah Tinggi Teknologi Nuklir BATAN
Kütahyali, C., & Eral, M. (2004). Selective adsorption of uranium from aqueous solutions using activated carbon prepared from charcoal by chemical activation. Separation and Purification Technology, 40(2), 109–114. https://doi.org/10.1016/j.seppur.2004.01.011.
Mellah, A., Silem, A., Boualia, A., & Kada, R. (1992). Adsorption of organic matter from a wet phosphoric acid using activated carbon: batch-contact time study and linear driving force models. Canadian Journal of Chemical Engineering, 70(3), 491–498. https://doi.org/10.1016/0255-2701(92)80015-U.
Mookherjee, M., & Stixrude, L. (2006). High-pressure proton disorder in brucite. American Mineralogist, 91(1), 127–134. https://doi.org/10.2138/am.2006.1886.
Mulyono, P., & Kusuma, W. M. (2010). Kinetika Adsorpsi Phenol Dalam Air Dengan Arang Tempurung Kelapa. Forum Teknik, 33(2), 103–110.
Saleem, M., Afzal, M., Qadeer, R., & Hanif, J. (1992). Selective adsorption of uranium on activated charcoal from electrolytic aqueous solutions. Separation Science and Technology, 27(2), 239–253. https://doi.org/10.1080/01496399208018876.
Shao, L., Zhou, Y., Chen, J. F., Wu, W., & Lu, S. C. (2005). Buffer behavior of brucite in removing copper from acidic solution. Minerals Engineering, 18(6), 639–641. https://doi.org/10.1016/j.mineng.2004.09.009.
Surendranathan, A. O. (2015). An introduction to ceramics and refractories. An introduction to ceramics and refractories. New York: CRC Press. https://doi.org/10.1201/b17811.
Tamura, H., Tanaka, A., Mita, K. Y., & Furuichi, R. (1999). Surface hydroxyl site densities on metal oxides as a measure for the ion-exchange capacity. Journal of Colloid and Interface Science, 209(1), 225–231. https://doi.org/10.1006/jcis.1998.5877.
Wang, G., Liu, J., Wang, X., Xie. Z., & Deng, N. (2009). Adsorption of uranium (VI) from aqueous solution onto cross-linked chitosan. Hazardaous Materials, 168(2-3), 1053–1058.
Funding
This work was totally funded by Ministry of Finance of the Republic of Indonesia through master scholarship of LPDP Indonesia. The authors gratefully acknowledge the funding.
Author information
Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Saputra, A., Swantomo, D., Ariyanto, T. et al. Uranium Removal from Wastewater Using Mg(OH)2-Impregnated Activated Carbon. Water Air Soil Pollut 230, 213 (2019). https://doi.org/10.1007/s11270-019-4269-8
Received:
Accepted:
Published:
Keywords
- Activated carbon
- Adsorption isotherm
- Adsorption kinetics
- Uranium wastewater