PROSIDING

Seminar Nasional Ke 55
TEMU-ILMIAH JARINGAN KERJASAMA KIMIA INDONESIA

Seminar Nasional XXIV

KIMIA DALAM INDUSTRI DAN LINGKUNGAN
"Perkembangan Mutakhir dalam Teori, Instrumentasi dan Penerapan" (Hotel Phoenix Yogyakarta, 19 November 2015)

REDAKSI:

Ketua merangkap anggota Sekretaris merangkap anggota Anggota

Prof. Dr. Sigit, DEA
Sihono
Ir. Prayitno., MT, Pen. Utama
Drs. Sutjipto., MS
Dra. Susana Tuning., MT
Imam Prayogo., ST

Diterbitkan 1 Februari 2016
Oleh
JARINGAN KERJASAMA KIMIA INDONESIA
YAYASAN MEDIA KIMIA UTAMA
Akta No: 24/15/IV/1993

REFEREE / DEWAN PENELAAH :

Prof. Drs. I Nyoman Kabinawa, MM, MB	Mikrobiologi Microbiology
Prof. Dr, Ir, Drs, Kris Tri Basuki, M.Sc	Ilmu Separasi (Separation Sciences), Teknologi Sopgrasi dan Membran Membrane and Separation Technology)
Prof. Drs. Sukandi Nasir, MM	Acrodinamika, Teknik Ruang Angkasa Lainnya/ Bahan Bakar Roket (Aeraspace Engineering not elsewhere classified)
Wisnu Susetyo, Ph. D	Jaminan Kualitas, Ilmu-ilmu Kimia Lainnya/ Managemen Mutu laboratorium Kimia (Chemical Sciences not elsewhere (lassified)
Dr. Bambang Setiaji	Kimia Bahan Solid Solid State Chemistry), Katalis Kimia (Chemistry of Catalyses) dan ilmu-ilmu Anorganik lainnya (Non-Orgranic Chemisiry not elsewhere classified)
Dr. Eko Sugiharto	Kimia Lingkungan, Jaminan Kualitas (Quality Assurunce)
Prof. Dr. Ir. Sigit, DEA	Simulasi dan Kontrol Proses, Design Teknik Kimia (Chemical Engineering Design) dan teknik Kimia Lainnya (Other Chemical Engineering not elsewhere Classiffied)
Drs. Sutjipto, MS, Pen Utama	Kimia Lingkungan, Energy dan Termodinamika Kimia Kimia Organik Fisik, Ilmu-ilmu kimia Lainnya (Chemical Sciences not elsewhere classified)
Ir. Ary Achyar Alfa, M.Si, Pen.Utama	Polimer, karakterisasi makromolekul, Mekanisme Polimerisasi (Polymerization Machanism) dan Teknik Bahan Lainnya (Other Material Engineering not elsewhere classified)
Ir. Erfin Yundra Febrianto, MT, Pen. Utama	Ilmu Bahan dan Proses/ Teknik Bahan Lainnya Other Moterial Engineering not elsewhere classified)
Dr. Ir. Mahyudin Abdul Rakhman M Eng, Pen Utama	Teknik Biokimia (Other Chemical Engineering not elsewhere classified)
Dr. Djoko Santoso, Pen. Utama	Bioteknologi (Biotechnology)

SUSUNAN PANITIA PENYELENGGARA

Ketua I	Wisnu Susetyo, Ph.D
Ketua II	Dr. Eko Sugiharto
Ka. Dept. Diklat	Ir. Prayitno, MT, Pen.Utama
Sekretaris	Sihono
Bendahara	Imam Prayogo, ST
Anggota	Prof. Dr. Ir. Sigit, DEA
	Drs. Sutjipto, MS
	Dra. Susanna TS, MT
	Ashar Andranto, ST

PENGANTAR

Puii Syukur kami panjakkan kehadirat Tuhan Yang Maha Esa atas petunjuk dan karuniaNya sehingga Prosiding Seminar Nasional XXIV Kimia Dalam Industri dan Lingkungan dengan tema "Perkembangan Mutakhir dalam Tceri, Instrumentasi dan Penerapan" dapat diterbitkan.

Prosiding ini merupakan dokumentasi karya ilmiah para peneliti dari berbagai disiplin ilmu terkait sains dan teknologi yang mendukung industri dan lingkungan, dan telah dipresentasikan pada Temu Ilmiah Jaringan Kerjasama Kimia Indonesia (JASAKIAI) pada tanggal 19 November 2015, bertempat di Hotel Phoenix, Jalan Jendral Sudirman No. 9 Yogyakarta.

Kegiatan Temu-Ilmiah Jaringan Kerjasama Kimia Indonesia ini merupakan penyelenggaraan yang ke XXIV dan dihadiri 60 peserla Adapun tujuan Seminar adalah untuk menjadi forum pertukaran informasi antara peneliti di Perguruan Tinggi dan Lembaga Penelitian di satu pihak dengan para praktisi di lingkungan industri di lain pihak.

Sebanyak 54 (Lima puluh empat) makalah telah dipresentasikan pada Seminar Nasional XXIV "Kimia dalam Industri dan Lingkungan" yang telah disclenggarakan pada tanggal 19 November 2015 oleh Jaringan Kerjasama Kimia Indonesia, dan setelah melalui penilaian olch Referee' Dewan Penelaah, dapat diterbithan dalam 1 (satu) buku proseding ini.

Adapun rincian Intitusi yang hadir dan karya ilmiah yang telah dipresentasikan adalah sebagai berikut:

No.	Institusi	Makalah
01	Pusat Sains dan Teknologi Bahan Maju PSTBM-BATAN Puspitek Serpong, Tangerang Selatan	9
02	PAIR-BATAN A. Cinere Pasar Jumat Kotak Pos 7002 JKSKL, Jakarta 12070,	6
03	Teknologi Intervensi Kesehatan Masyarakal, Badan Penelitian dan Pengembangan Kesehatan Kemenkes Jakarta Percetakan Negara No 29, Jakarta 10560	8
04	Pusat Teknologi Roket, LAPAN Il. Raya LAPAN No. 2 , Mekarsari, Rumpin, Kab, Bogor 16350	2
05	Pusat Penelitian Bioteknologi dan Bioindustri Indonesia, JI Taman Kencana 1, Bogor 16151, Indonesia	2
06	Pusat Sains dan Teknologi Akselerator - BATAN Jl. Babarsari, Yogyakarta	6
07	Pusat Kajian Sistem Energi Nuklir- BATAN Jl. Kuningan Barat, Mampang Prapatan Jakarta 12710	2

08	Pusal Biomedia dan Teknologi Dasar Keschatan Badan Litbangkes', Kementerian Kesehatan RI	11
09	Pusat Penelitian Bioteknologi - LIPI J. Raya Bogor Km 46, Cibinong 16911, Jawa Barat	6
10 Pusat penelitian dan Pengembangna Keschatan,		
Bahitbangkes, Depkes. RI		
Percetakan Negara No. 29,		
Jakarta I0560		

Jaringan Kerjasama Kimia Indonesia (JASAKIAI) sebagai pihak penyelenggara seminar, dengan imi menyampaikan rasa terima kasih yang sebesar-besarnya kepada semua peserta dan pembawa makalah yang telah berpartisipasi dalam Seminar dan akkif memberikan masukan-masukan yang bermanfaas bagi semua pihak. Seluruh Dewan Penelaah yang telah membantu dalam seleksi, penilaian dan peningkalan mutu makalah untuk bisa dipublikasikan, seluruh anggota dewan redaksi yang telah bekerja keras untuk menyusun dan menerbikkan prosiding ini, serta semua pihak yang telah ikut membantu dalam penyelenggaraan seminar sampai dapat diterbitkannya prosiding ini.

Besar harapan kami bahwa Prosiding ini akan banyak berguna bagi para Pembaca serta semua rekan seprofesi, serta akan dapat menjadi acuan dan titik tolak untuk mencapai kemajuan yang lebih besar untuk perkembangan Ilma Kimia dan terapannya di Indonesia. Kami sadari bahwa Seminar dan Prosideng ini tidak lepas dari berbagai kehurangan. Untuk itu, kami mohon maaf dan kritik serta saran yang bersifat membangun demi perbaikan dimasa datang selalu kami harapkan dari Rekan Sejawat dan Pembaca yang budiman.

Yogyakarta, 1 Februari 2016

Redaksi

DAFTAR ISI

NO. DAFTAR ISI
HAL.AMANJUDUL.
REFREE/DEWAN PENELAAH
SUSUNAN PANITIA
PENGANTAR
DAFTAR ISI

1. STUDI FARMAKOLOGI EFEK ANTI HIPERKOLESTEROLEMLA SEDIAAN KOMBINASI ANGKAK DAN KAYU MANIS PADA TIKUS PUTIH (RATTUS NORVEGICTIS) GALUR WISTAR YANG DIINDUKSI PAKAN TINGGI KOLESTEROL
Ai Hertati,' Nurfaili Ekawati, Herman Irawan, Ela Novianti, dan Djadjat Tisnadjaja
2. KARAKTERISTIK KASUS HIV DAN SUBTIPE DOMINAN DI PAPUA 9-16

Reselinda

3. RESPONSIVITAS HIDROGEL POLIVINIL ALKOHOL/KARBOKSIMETIL. SELULOSA IRADIASI TERHADAP PERUBAHAN pH Ambyah Suliwarno* dan Ine Cyntya**
4. PENGGUNAAN REFLUKS PADA PELINDIAN ASAM LNTUK 23-28 MENINGKATKAN SINTESIS ZOC
Harry Supriadi, Erlin Purwita Sari, Herry Poernome
5. HUBUNGAN ANTARA LINGKUNGAN DENGAN KEJADIAN 29-36 PNEUMONIA PADA SURVEILANS SEVERE ACUTE RESPIRATORY INFECTIONS (SARI) DI INDONESIA

Roselinda

6. ANALISA SITUASI DEMAM BERDARAH DENGUE (DBD) DI KOTA JAMBI PERIODE (2007-2011)
Dasuki, Elsa Elsi, Sehatman
7. ANALISA LANJUT HUBUNGAN ANTARA OBESITAS DAN KEJADIAN KECELAKAAN DI INDONESIA BERDASARKAN DATA RISKESDAS 2013
*Raflizar, **Merryuni Girsang
8. SINTESIS DAN KARAKTERISASI KATODA BATERAI LIFePO 4 . $57-64$ DENGAN PENAMBAHAN ASAM STTRAT
Wugiyo Hoageowiranto, Indra Gunawan
9. PRETREATMENT BIOLOGI DAN HIDROLISIS ASAM TANDAN $65-70$ KOSONG KELAPA SAWIT Isroi dan Irma Kreseawatí
10. EVALUASI IMPLEMENTASI PERATURAN DAERAH KOTA PADANG PANJANG NOMOR 8 TAHUN 2009 TENTANG KAWASAN TANPA ASAP ROKOK DAN KAWASAN TERTIB ROKOK
Rafizar ${ }^{1}$ Merryuni Girsang ${ }^{2}$
11. PEMBENTUKAN NANOPARTIKEL LICOO2 MENGGUNAKAN TEKNIK 81 -84

PLANETARY MILLING
Elman Panjaitan, Wagiyo
12 STATUS GIZI WANITA USIA SUBUR (WUS) DI INDONESIA MENURUT 85-92 DATA RISKESDAS 2013
Kristina*
13 IMPLEMENTASI STRATEGI DOTS DI RUMAH SAKIT DALAM $93-98$ PENANGGULANGAN PENYAKIT TUBERCULOSIS PARU
*Merryani Girsang, **Refrizar

NO.

14 RASIO TENAGA KESEHATAN PERAWAT DAN BIDAN DI PROVINSI JAMBI
Dasuld, Kusuma A. Helper S Manalu
Is PENYEBAB KEMATIAN UTAMA MENURUT KELOMPOK UMUR TAHUN 2011
Kristina*
16 PREDIKSI DISTRIBUSI ZIRKONIUM - HAFNIUM PADA KESETIMBANGAN CAIR - CAIR DALAM SISTEM ASAM NITRAT ENCER DAN TBP + KEROSIN
Wahyu Rachmi P. ${ }^{\text {T }}$, Wahyudi Budi $\mathbf{S}^{\text {. }}$, Budhijanto ${ }^{\text {¹ }}$, dan Dwi Biyantoro ${ }^{2}$
17 CAMPURAN EKSTRAK TEMUPUTTH (Curcuma zedoaria (Christm) Roscoe) DAN MAHKOTA DEWA (Phaleria macrocarpa (Scheft) Boerl.) IRADIASI GAMMA SEBAGAI ANTIBAKTERI
Nilham
18 PERBANDNGAN KUALTTAS DAN KAPASITAS DAYA SERAP AIR SUPER ABSORBAN POLIMER KOMPOSIT BEBERAPA FILLER BENTONIT, ZEOLIT, KAOLIN DAN FELDSFAR
${ }^{1}$ Jadigia Ginting, ${ }^{2}$ Yustinus P dan ${ }^{3}$ Sri Yatmani
19 POTENSI PADUAN POLIMER POLIPROPILEN-KO-ETILEN/POLI-\&KAPROLAKTON DAN POLIPROPILEN DITEMPEL MALEIK ANHIDRAT HASIL IRADIASI GAMMA SEBAGAI BAHAN BIODEGRADABLE Nikham
20 PENGGUNAAN FILLER MONTMORILONIT PADA ELEKTROLIT POLIMER PADAT BERBASIS POLIMER PMMA DENGAN GARAM LICL Yustinus Purwamargapratala dan Jadigia Ginting
21 DAMPAK KEBAKARAN HUTAN TERHADAP KEIADIAN PNEUMONIA KAITANNYA DENGAN PERILAKU MASYARAKAT DI KABUPATEN TANJUNG JABUNG TIMUR, PROVINSI JAMBI
Suharjo
22 KEJADIAN LUAR BLASA (KLB) DEMAM BERDARAH DENGUE DI KABUPATEN MERAUKE PAPUA
Rudi Hendre P, Eka Pratiwi dan John Master
23 SURVE CEPAT KEPADA PENGEMUDI BUS DALAM RANGKA ANTISIPASI KECELAKAAN DAL.AM PERJAL.ANAN MUDIK LFBARAN 2015
Joko Irianto ${ }^{\text {* }}$, Saimawar Djaja
24 OPTIMASI PROSES DEGRADASI LIMBAH WARNA OLEH KATALIS HETEROGEN $\mathrm{Fe}, \mathrm{O}_{4} / \mathrm{SiO}_{2}$ MENGGUNAKAN METODE FOTO FENTON Sari Hasnah Dewi dan Siti Wardlyati
25 PEMBUATAN LTJ HIDROKSIDA DARI HASIL OLAH MONASIT 171-180 DENGAN PROSES ASAM
Suyanti dan Prayitno
26 KARAKTERISASI ZIRKONIUM OKSIDA HASIL KALSINASI Zr(OH) DARI PROSES PEMURNIAN PASIR ZIRKON Iga Trisuawati ", Indra Perdana, I Made Bendiyasa
27 PENGARUH IRADIASI TERHADAP KUALTTAS FUNGSIONAL ANEKA 187-192 SAYUR KERING SKALA SEMI-PILOT
Idrus Kadir dan Darmawan

[^0]| No. | | HALAMAN |
| :---: | :---: | :---: |
| 43 | SKRINING INHIBITOR KOMPETTTIF A GLUCOSIDASE DARI ISOLAT LOKAL ACTINOMYCETEXSE | 319-324 |
| | Fa Novianti', Ai Hertati, Nurfaili Elawati, Herman Irawan, dan Djadjat Tisnadjaja | |
| 44 | PENGGUNAAN KCIO, C/S/Sb S_{1} POWDER SERACAI PENGGANTI LEAD AZIDE UNTUK PRIMARY EXPLOSIVE DALAM PEMANTIK IGNITER ROKET | 325-332 |
| | Evie Lestariama | |
| 45 | HUBUNGAN ANTARA PENCEMARAN LINGELNGAN DENGAN KEKEBALAN PENYAKIT | 383-342 |
| | Neer Eadah Pracoyo | |
| 46 | PRODUKSI ANTIOKSIDAN OLEH KAPANG ENDOFIT KCISBR9 DAN KClSB RII ASAL RIMPANGCLACTAMA LONGA L | $343-350$ |
| | Harmastiei Seliman, Sytvia Lelatampessy, Tiwit Widowath. Faury Racheras das Partemuan Simanjuntak | |
| 47 | KANDUNGAN LOGAM BERAT DAN MIKROBA PADA MAKANAN OLAHAN CURAH | 351-356 |
| | Harsejo* dan Harmastini Suldman** | |
| 48 | EFEK MUTASI UV TERHADAP PRODUKSI INHIBITOR a GLUKOSIDASE YANG DIHASILKAN OLEH ACTINOATICETES SF: | 357-362 |
| | Nurlaili Ekawati', A. Hertati, II. Irawan, E. Novianti, \& D. Tisaadjaja | |
| 49 | STUDI OKSIDASI PADUAN ZIRKONIUM ZINbMoGe MENGGUNAKAN THERMOGRAVIMETRI | 363-368 |
| | Rehmad Salan, A. Sujatne, Bandriyana, Yustinas P-dan A. Dimyati | |
| 50 | UI KOMPOSISI UNSUR, UII HOMOGENTAS. DAN UII STABILITAS KANDIDAT BAHAN STANDAR PEMBANDING ZIRKONIA DENGAN METODE SPEKTROMETRI SERAPAN ATOM (SSA). | 369-374 |
| | Supriyanto C., Sande, Sajlima | |
| 51 | SINTESIS DAN KARAKTERISASI BAHAN KATODA LIFEFO, DENGAN MENGGUNAKAN METODE SOUDD STATE REACTION | 375-388 |
| | Indra Guaman, Sagik Sugiantore | |
| 52 | PERANCANGAN DAN PEMBUATAN ALAT LII TEKANAN PEMBAKARAN (CIOSED VEKEE.) UNTUK BAHAN PIROTEKNIK | 383-366 |
| | Evie Lestariana | |
| 53 | HUBUNGAN ANTARA HASIL TITER ANTIBODI CAMPAK. DIFTERI. DAN HEPATITIS B DENGAN, IMUNISASI DAN RIWAYAT PENYAKIT CAMPAK, DEFTERL, DAN HEPATITIS B | $387-394$ |
| | Noer Eedah Praceys | |
| 54 | PEMERIKSAAN TRIGLISERIDA PADA PENDERITA DIABETES MELLITUS | $395-400$ |
| | Wibowe, Rudi Ilendre Putranto | |
| | DAFTAR HADIR | $491-406$ |

PERBANDINGAN KUALITAS DAN KAPASTTAS DAYA SERAP AIR SUPER ABSORBAN POLIMER KOMPOSIT BEBERAPA FILLER BENTONIT, ZEOLIT, KAOLIN DAN FELDSFAR

${ }^{1}$ Jadigia Ginting, ${ }^{2}$ Yustinus \mathbf{P} dan ${ }^{1}$ Sri Yatmani
${ }^{1,2}$ BSBM PSTBM BATAN Kawasan Puspitek Serpong
${ }^{\text {'Teknik Elektro III, II Raya Puppptek Serpong Tangrel }}$

Abstract

ABSTRAK Pertandingan Kiwalitas dan Kapasitas Daya Serap Alr Super Absorban Polimer Komposit dari Beberapa Filler bentonoik, zeolir, kaolin dam foldifar. Merblagai macam filler digumakan mantak membwat sederelan Superabsorbem Pobymern Composites (SAPC) dengan naksi kopolimerisaxi menggmuakan pelimer akrilat. Beberupa filler yang digumakan antara lain : Bentonit, zoofit, kanfin dan feldyfar unnak membuat SAPC Simtesis dilaksanakan dongan menggunakan metoda kelompok TKimia ITB Bamhung Hasil sintesis kemidian didentidikasi dengan spekrrashopi FFYR dan SEM Kemudian dilakukan uil daya serap air keempot filler polimer komposit yong diunderiz. Hasil pengukuran memimpuk han daya serap air SAPC -hentonis adalah 0.765, SAPC-seolii 0,205 dan SAPCkandin 0.727 sementara SHPC-Geld adalah 1,171. Pongamulan SEM dilokukan wanik melihat amorfologi, kepaution boiropik dan homogenisasi sampel SAPC yang dihasithan Ancha ragam filler yang digunakan dalam penerivian ini berhasil membentuk SAPC dengan kemwompuan serapan air yang variatif, dan yang terbesar adalah SAPC-fildyar. Sinupan air ganam dan air asam diahar pada SAPC-daolin dengan havil pang memnashan.

Kata-kata kunci SAPC-bow, SAPC-sent, SAPC-kaol, SAPC-feld, hapu senupan air, haparitas serupan air.

Abstract

Comparatien of the Qwality and ale Capacily Water Absarbancy Of Sapc Using Some Fillers Bentomic., Zeolite, Kaolinite And Feldstar. Some fillery were used to sonthesize a series of Superabsorbent Polywers Composites (SAPC) by copolymurisation reaction of an acryic polyner. Some fillers med were tovtonites, seolites, kaolinitc and feldsfar to manufacture the SAPC The symhesis were done using the method of Chem. Eng ITB Bandung The ressult were further daanacterized by fourien (ramyonm infra red spectroscopy (F7IR), and scanning electron microscopy (SPM). Then the water absorbancy of the SAPC were measured The water absorbancy of SAPC . bemonite was 0.165 , SAPC-Zeolit 0.205 and SAPC-kaolinite 0.727 meanwhile SAPC'-色ldsfar was 1117. SSM obsernanon was realisised to get the morfologi structure. isotropik form and homogen formule of the samples SAPC producted. Some fillers used in these experiment wew saccessfally formed the SAPC with difter water aborbances abilities, and the best was SAPC.-flligfor. The absorbancyin saline and acid water were measwred for SAPC-haolin and has satisfied remelt

Keywondr SAPC-bent, SAPC-zeol , SAPC-kaol, SAPC-klM, water absoptian velocity, water absorption capacity

PENDAHULUAN

Cuperahsorben polimer komposite merupakan suatu bahan yang dapat mengabsorpsi dan menyimpan cairan [1] terdin dan campuran polimer dan filler. Polimer komposit superabsorbent bersifat ramah lingkungan karcna $90^{\circ} \%$ bahannya dapat diuraikan ${ }^{9}$ Bermacam filler dapat digunakan
untuk menguatkan struktur gel yang terbentuk, antara lain bentonit, zeolit, kaolin dan feldsfar dan sebagainya.

Bentonit adalah suatu bahan tanah liat yang bersifat sedikit teriarut dalam air dan membeatuk campuran sangat kental. Pada bidang industri, bentonit yang sering dipakai adalah jenis natrium dan kalsium. Na-
bentonit disebut juga bentonit swelling. Sifat adsorpsinya disebabkan oleh karena memiliki ukuran partikel koloid yang sangat kecil dan memiliki kapasitas permukaan ion yang tingeg. Pengembangan bentonit discbabkan olch adanya penggantian isomorphous pada lapisan oktahedral.

Gambar 1. Batuan (a) bentonite dan (b) Batuan Zeolite

Dibawah ini Rumus Molekul beberapa senyawa bahan filler.
Tabel 1. Rumus Senyawa Beberapa bahan sedimen

No	Nama	Rumus
1.	Bentonit	$\mathrm{Al}_{2} \mathrm{O}_{3} 4 \mathrm{SiO}_{2} \times \mathrm{H}_{2} \mathrm{O}$
2.	Zeolit	$\mathrm{M}_{3}, \mathrm{O} . \mathrm{Al}_{2} \mathrm{O}_{2} \times \mathrm{XiO}_{2} . \mathrm{yH}_{2} \mathrm{O}$
3	Kaslinit	$\mathrm{Al}_{2} \mathrm{O}_{3} 2 \mathrm{SiO}_{2}, 2 \mathrm{H}_{2} \mathrm{O}$
4	Kalsium Feldspar	$\mathrm{CaAl}_{2} \mathrm{Si}_{2} \mathrm{O}_{3}$

Zeolit merupakan senyawa aluminosilikat terhidrasi yang tersusun oleh kation-kation alkali dan alkali tanah. Ikatan Al-Si-O membentuk kristal dan logam alkali tanah merupakan sumber kation yang dapat dipertukarkan. Senyawa ini mempunyai struktur tiga dimensi yang ber pori-pori atau ruang yang dapat disis oleh kation lain atau molekul air tanpa merusak strukturnya. Oleh sebab itu zeolit dapat dimanfaatkan sebagai absorben. Unsur utama zzolit terdiri dari 2 (dua) kelompok besar yaitu mordenit dan clinoptifolite yang mempunyai sifat yang berbeda terhadap air karena kandungan unsur utamanya, mordenit lebih sensitive terhadap air. ${ }^{[3]}$

Kaolin adalah mineral alami yang banyak dipakai dalam industri, terdiri dari senyawa $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{SiO}_{2}, \mathrm{TiO}_{2}$. Banyak digunakan dalam industry keramik, industri fiberglass dan industri kertas serta semen.

a. Kaolin
b. Feldsfar

Gambar 2. Batuan : a. Kaolin b. feldsfar
Feldsfar memiliki formula XAl(1-2)Si(32) O_{5}, dimana x adalah Na atau K atau Ca , memiliki struktur monoklinik sampai triklinik.

Pembuatan SAPC dengan berbagai filler ini dilakukan dengan menggunakan metode Kelompok T.Kimia ITB Bandung ${ }^{[1-2]}$ Polimer Superabsorban dapat digolongkan menjadi beberapa jenis yaitu berdasarkan morfologi, jenis bahan penyusunnya dan proses pembuatan Berdasarkan morfologinya, polimer superabsorban diklasifikasikan menjadi polimer serbuk, partikel, bola, serat, membran, dan emulsi. Bentuk morfologi polimer disesuaikan dengan aplikasinya.

Polimer komposit superabsorben memiliki kelebihan dibandingkan dengan polimer ahsorben biasa tanpa penguat seperti kapasitas absorbansi yang lebih baik, karakteristik fisik yang cukup kuat, stabil terhadap perubahan suhu dan keasaman (pH) [3-1. Kapasitas absorbansi dari polimer komposit superabsorben yang dihasilkan sangat baik, mampu menyerap air hingga ratusan kali berat keringnya. Sifat produk gel yang dimginkan adalah rantai polimer yang panjang, jemih, dan elastik.

Kemampuan menyerap dan menyimpan air material ini disebabkan oleh keberadaan gugus fungsi hidrofilik seperti $-\mathrm{OH}_{3}-\mathrm{COOH}_{\text {, }}$ $-\mathrm{CONH}_{2},-\mathrm{CONH}$, atau $-\mathrm{SO}_{3} \mathrm{H}$, sepanjang rantai polimer. Terdapat dua mekanisme penyerapan air yaitu kimiawi dan fisik Penyerapan air melalui proses penyerapan air kimiawi melibatkan reaksi kimia yang akan mengubah sifat alami material seperti sifat swelling SAPC-bent, SAPC-Zeol, SAPC -kaol dan SAPC-feld terhadap air yang dapat digambarkan sebagai proses dan besaran interkalasi, Gambar 3.

Gambar 3. diagram / pola formasi interkalasi (3)

Penelitian ini bertujuan untuk menentukan kualitas SAPC dengan aneka filler yang digunakan sebagai fillemya Kualitas hasil sintesis dimaksudkan untuk melihat stabilitas SAPC setelah penyerapan air dan laju serapan airmya Kapasitas untuk menunjukkan kemampuan menyimpan airnya seberapa lama dan seberapa banyak.

METODOLOGI

Lingkup Penelitian

Penelitian yang dilakukan terdiri dari beberapa tahapan antara lain merupakan proses pembentukan polimer komposit superabsorben dengan cara polimerisasi adisi untuk membentuk kopolimer dan metode grafting untuk menggabungkan polimer dengan montmorillonit. Proses polimerisasi dilakukan dengan metode kimia, yaitu dengan menggunakan bahan kimia inisiator polimerisasi dan bahan pembentuk ikatan silang (crosslinker). Bahan inisiator yang digunakan adalah anonium persulfat (APS) dan bahan pembentuk ikatan silang adalah N, N metilen bisnkrilamid (MBA) disertai pemanasan, lalu menguji sifat penyerapan air dan polimer superabsorben yang dihasilkan yaitu kapasitas penyerapan air serta laju penyerapan air.

Kemudian karakterisssi SAPC yang mencakup identifikasi ikatan dalam komposit polimer superabsorben menggunakan FTIR dan penentuan morfologi komposit polimer superabsorben menggunakan SEM

Bahan :

Bahan-bahan yang digunakan : Akrilamid/ AM; Asam aknlik/ AA:Amonium Persulfat (APS) N, N-methylenebisacrylamide (MBA) ; Aqua dm dan NaOH 5 M , bentonite, zeolite, pirofilit dan montmorillonite.

Alat:

Peralatan yang digunakan:

Hot Plate Magnefic suirer; Labu kepala 3. 250 ml ; Kondensor ; Klem dan penyangga:

Neraca massa; Oven; Gclas ukur 50 dan 100 ml : Spatula : Guntingi pisau : Saringan ; Corong: Pipet tetes danTermometer $200^{\circ} \mathrm{C}$

Prosedur Percobaan

Pembuatan SAPC dengan berbagai filler dan laju penyerapan air, serta identifikasi struktur karakteristik

Pembuatan SAPC

Asam akrilik sebanyak $10,4 \mathrm{~mL}$. dimasukkan ke dalam labuleher tiga ;
11 mL . NaOH dan 35 mL aqua dan ditambahkan ke dalamnya Kemudian, sebanyak $5,5 \mathrm{~g}$ akrilamida, MBA dan $0,6 \mathrm{~g}$ bentoait Aldrich atau zeolit dimasukkan ke dalam campuran Jumlah MBA yang dimasukkan adalah $0,02 \%$. Campuran ini kemudian diaduk dengan menggunakan magnetic stirrer selama I jam tanpa pemanasan. Setelah itu di tambahkan 0,12 gram APS ditambahkan. Setelah semua bahan masuk, campuran diaduk sambil dipanaskan.Campuran akan berubah menjadi gel setelah mencapai temperatur reaksi pada $70^{\circ} \mathrm{C}$ dan atau diproses dengan ultrasonic. Gel SAPC dikeluarkan dan kemudian dibilas dengan air aqua dm untuk menghilangkan sisasisa reaktan. SAPC yang terbentuk, dipotong kecil untuk meningkatkan kapasitas penyerapan air, dan dikeringkan di dalam oven pada suhu $70^{\circ} \mathrm{C}$ selama 24 jam .

Diagram alir proses pembuatan SAPC dapat diperlihatkan pada Gambar 4.

Gambar 4. Diagram ahr proses pembuatan SAPC

Uji Kapasitas Penyerapan Air dan Laju Penyerapan Air

SAPC yang dihasilkan, direndam dalam air aqua dm pada temperatur ruang selama 12 hari untuk mencapai kestetimbangan penggembungan SAPC yang telah menggembung kemudian dipisahkan dari air aqua dm yang tidak terserap dengan cara penyaringan kemudian ditimbang sctiap 2 hari. Untuk pengukuran laju penyerapan air, SAPC yang dihasilkan direndam dalam air aqua dm pada temperatur ruang Pada menit ke 5, 15, 30,45 dan 60 SAPC yang telah menggembung tersebut diambil dan ditimbang.

HASIL DAN PEMBAIIASAN

Polimer komposit superabsorban (Superabsorben Polymer Composite/SAPC) yang dibuat pada penelitian kali ini merupakan hasil kopolimerisasi dari asam akrilik dan akrilamid dengan ditambahkan bentonit,zeolit, pirofilit dan montmorillonite sebagai bahan penguatnya Pembuatan SAPC menggunakan ammonium persulfat (APS) sebagai inisiator dan $2,2-\mathrm{N}, \mathrm{N}$ methylene bisacrylamide (MBA) sebagai crosslinker. Penelitian ini bertujuan mengetahui laju seria kapasitas penyerapan air yang maksimum Analisa kuantitatif yang dilakukan dengan percobaan meliputi penentuan laju serta kapasitas abosrbsi dalam air. Kemudian data SAPC dengan berbagai filler diatas akan dibandingkan untuk melihat kualitas bahan superabsorban tersebut Sementara, analisis kualitatif dilakukan dengan menggunakan Fourier Transform Infra Red (FTIR) dan Scanning Electron Microscopy (SEM).

2. Feldsfar

Gambar 5. Serapan SAPC dengan FTIR

Penentuan struktur mikro dengan SEM
Peneatuan struktur mikro SAPC dengan berbagai filler dapat diperlihat pada Gambar 6.
a) SAPC feldsfar

b) SAPC-kaolin

c) SAPC- bentonit

d) SAPC -zeolit

Gambar 6. Mikrograf SAPC dengan beberapa Filler

Mikrrograf di atas menunjukkan mikrostruktur beberapa SAPC, yang memiliki bentuk isotropic merata serta homogen, dimana SAPC kaolin dan feldsfar memiliki
struktur lebih kuat dan lebih poros, sehingga menyerap air lebih banyak dan tersimpan lebih baik.

Daya Serap air SAPC dalam media air demin
a. Grafik Daya Serap Air SAPC- bent

b. Grafik Daya Serap Air SAPC- zeol

c. Grafik Daya Serap Air SAPC- felsdfar

Gambar 7. Grafik Daya serap air SAPC bentonite, zeolit dan felsdfar

Gambar 8. Daya Serap air SAPC-kaolin dalam media air demin

Hasil pengukuran daya serap air menunjukkan SAPC-kaolin adalah 0.727; SAPC - feldsfar 1,171; SAPC- zeol 0,205 dan SAPC-bent 0,165 . Semua SAPC yang dihasilkan cukup stabil setelah pemakaian dan perendaman dalam air dan air garam serta air asam.

Grafik Hasil Pengukuran Daya Serap Air SAPC dalam berbagai media

Grafik Daya Serap Air SAPC-kaol dalam media garam.

Grafik 9. Daya Serap Air SAPC-kaol dalam media garam

Gambar 10. Daya Serap Air SAPC -kaol dalam media garam dan asam

KESIMPULAN

Pengukuran daya serap air menunjukkan SAPC bentonit 0,165 ; zoolit 0.205 ; kaolin 0.727 , dan feldsfar 1,171 , yang diukur sebagai gradient serapan. Aneka ragam filler yang digunakan dalam penerlitian ini berhasil membentuk SAPC dengan kemampuan serapan air yang variatif, dan yang terbesar adalah SAPC-feldsfar. Serapan air garam dan air asam diukur pada SAPC-kaolin dengan basil yang memuaskan.

Ucapan Terima Kasih

Kami ucapkan terima kasih pada setiap pengelola / operator peralatan yang ada di PSTBM Batan dan kepada Menejemen PSTBM yang memberi dukungan atas penggunaan fasilitas di PSTBM.

DAFTAR PUSTAKA

1. Ade Rahma Dyah H dan Risca Yanditia, Optimalizasi kondisi reaksi untuk meningkatkan sifat absorbansi komposit polimer superabsorben, Laporan Penelitian Teknologi Kimia 2 , Teknik Kimia Fakultas Teknologi Industri ITB,2011
2. Gao, Deyu, "Superabsorbent Pohmer Composite (SAPC) Materials and their Industrial and High Tech Applications", Disserfation, Der Technischen U ă Bergakademie Fiberg University. 2003
3. Huafei Xie et al, Study on the Preparation of Superabsorbent Composite of chitosan-gpoly(acrylic acid) Kaolin by In-situ Polymerization, Intl, Journal of Chemistry, Vol.3, No. 3; August 2011.
4. Jadigia Ginting , Pengaruh Perlakuan Filler Pirofilit Terbadap Daya Serap Air SAPC dan Pengujian Aplikasinya, Seminar Nasional Iptek Nuklir Dasar dan Terapan , tangeal 9-10 Juni 2015 di PSTA Batan Yogyakarta
5. Suardana, I.N, (2008), Optimalisasi Daya Adsorpsi Zeolit Terhadap Ion Kromium(III). Jurnal Penelitian dan Pengembangan Sains \& Humaniora, Lembaga Penelitian Undiksha, 2(1). pp 17.33.
6. Deni.Swastomo,Kartini Megasari,Rany Sapta Aji. 2008, Pembratan Komposit Polimer Superabsarben dengan Mexin Rerkay Elektron Seminar Nasional IV SDM Teknologi Nuklir, Yogyakarta ;25-26 Agustus 2008.
7. Sri Yatmani dan Jadigia Ginting, Pembuatan Superabsorban Polimer Komposit Berbasis Bentonit dan Zeolit, Prosiding Seminar Nasional Kimia dan Pendidikan Kimia 2011. FMIPA UNS, Surakarta 7-8 Oktober 2011. ISBN 978-979-19215-1-0
8. Sri Yatmani dan Jadigia Ginting, Sintesis
dan Karakterisasi Superabsorban Polimer Komposit Berbasis Nanoclay Montmorillonit, Prosiding Seminar Nasional XXI
Kimia dalam Industri dan Lingkungan " Yogyakarta, 6 Des 2012, Jasa Kiai. ISSN : 0854-4778
9. Sri Yatmani dan Jadigia Ginting, Kajian Abu Terbang(Fly Ash)sebagai Filler Superabsorban Polimer Komposit (SAPC), Prosiding Seminar Nasional XVI " Kimia dalam Pembangunan " Yogyakarta , 20 Juni 2013, Jasa Kiai. ISSN : 0854-4778

10 A.ZainalAbidin, I. Noezar, and Ridhawati, Sywhesis and Characterization of Superabsorbent Polymer Composites Based on Acrylic Acid. Acrylamide and Bentonite, Indonesian Journal of Material Science, Vol 12 (2), Februan 2011
11. A.Zainal Abidin dkk, Sintesis dan Karakterisasi polimer Superabsorban dari Akrilamida, Jurnal Tehnik Kimia Indonesia, Vol. 11. No. 2, 2012, 87-93,
12. An Li and Aigin Wang, Synthesis and Properties of Clay-based Superabsorbent Composite, European Polymer Journal, 41 (2005) 1630-1637

TANYA JAWAB

Siti Wardiyati

- Filler apa saja yang dapat digunakan untuk membuat SAPC ?

Jadigia Ginting

Indonesia memiliki aneka ragan bahan sedimentasi yang mengandung campuran aluminat $\mathrm{Al}_{2} \mathrm{O}_{3}$ dan silikat SiO_{2} yang dapat dipakai sebagai penguat atau filler untuk pembuatan SAPC seperti bentonit dari berbagai daerah'wilayah dan zzolit dari Sukabumi dan Lampung ataupun dari Bayah, kaolin, batu apung, feldsfar, abu terbang yang memiliki unsur utama yang terdapa! pada montmorillonit dan atau pirophillit.

DAFTAR PESERTA

No.	Nama	Alamat
1	Agus Sudjatno	Pusat Sains dan Teknologi Bahan Maju PSTBM-BATAN Puspitek Serpong. Tangerang Selatan
2	Ai Hertati	Laboratorium Biofarmasetika Pusat Penelitian Bioteknologi - LIP1 J. Raya Bogor Km 46, Cibinong 16911, Jawa Barat E-mail :aihertati@gmail.com
3	Amanah Wati	Fakultas MIPA - Kimia Universitas Gajah Mada, Yogyakarta
4	Ambyah Suliwarno., Drs, MSc	PAIR-BATAN J. Cinere Pasar Jumat Kotak Pos 7002 JKSKL. Jakarta 12070,
5	Ashar Andrianto, ST	Pusat Sains Teknologi Akselerator - BATAN J. Babarsari Yogyakarta 55281
6	Darwin Alyasa Siregar	Pusat Survei Geologi (Badan Geologi) J. Diponegoro 57, Bandung Email.darwinalijasa/ivahoocom, telp. 022. 6032207
7	Dasuki	Pusat Teknologi Intervensi Keschatan Masyarukat, Badan Penclitian dan Pengembangan Keschatan Л. Percetakan Negara No. 29, Jakarta 10560
8	Deris Selawati	Fakultas MIPA - Kimia Universitas Gajah Mada, Yogyakarta
9	Deswita	Pusat Sains dan Teknologi Bahan Maju, PSTBM-BATAN, Puspiptek,Indonesia deswita@batan.go.id
10	Didin S. Winatapura	Pusat Sains dan Teknologi Bahan Maju BATAN Kawasan Puspiptek Serpong. Tangerang, 15313 email: didinswfbatango id

11	Djumhawan Ratman Permana	Pusat Penelitian Bioteknologi, LIPI Bogor E-mail :pdjumhawan @yahoo.com
12	Eka Pratiwi	Pusat Biomedis dan Teknologi Dasar Kesehatan
		Kementrian Kesehatan RI
		J. Percetakan Negara 29
		Jakarta Pusat.
13	Ela Novianti*	Laboratorium Biofarmasetika Pusat Penelitian Bioteknologi - LIPI
		J. Raya Bogor Km 46.
		Cibinong 16911, Jawa Barat
		E-mail; cla noviantiggmail, com
14	Elman Panjaitan	Pusat Sains dan Teknologi Bahan Maju, PSTBM-BATAN,
		Puspiptek,Indonesia
		elmanp@batan.go.id
15	Erlin Purwita Sari., S.Si	Pusat Sains dan Teknologi Akselerator BATAN
		Л. Babarsari,
16	Evi Yulianti	Pusat Sains dan Teknologi Bahan Maju, PSTBM-BATAN,
		Puspiptek, Indonesia yulianti@batan.go.id
17	Evic Lestariana, ST	Pusat Teknologi Roket, LAPAN
		J. Raya LAPAN No. 2,
		Mekarsari, Rumpin,
		Kab. Bogor 16350
18	Firda Dimawarnita	Pusat Penelitian Bioteknologi dan Bioindustri Indonesia,
		J Taman Kencana 1,
		Bogor 16151, Indonesia
		firda.dimawarnita@gmail.com
19	Harmastini Sukiman	Pusat Penclitian Bioteknologi LIPI
		JI. Raya Bogor KM 46,
		Cibinong
20	Harry Supriadi., S.ST	Pusat Sains dan Teknologi Akselerator BATAN
		J. Babarsari,
		Yogyakarta
		harrysupriadi48@yahoo.com
21	Harsojo	PAIR-BATAN
		J. Cinere Pasar Jumat Kotak Pos 7002 JKSKL,
		Jakarta 12070,

22	I Nyoman K. Kabinawa, Prof	Puslit Bioteknologi - LIPI, Cibinong
23	Idrus Kadir	PAIR-BATAN Л. Cinere Pasar Jumat Kotak Pos 7002 JKSKL. Jakarta 12070 . E-mail: ruskadir@batan.go.id
24	Iga Trisnawati., ST, MT	PSTA - Batan Jn. Babarsari Yogyakarta
25	Imam Prayogo., ST	Pusat Sains Teknologi Akselerator - BATAN J. Babarsari Yogyakarta 55281
26	Isroi., Dr, SSi, MSi.	Pusat Penelitian Bioteknologi dan Bioindustri Indonesia J. Taman Kencana No. 1, Bogor Jawa Barat 16151 Mobile: 082221723999 , Telp. 0251 - 83348842 Fax.: $0251-8324048$ E-mail: isroi93@gmail.com
27	Jadigia Ginting	BSBM PSTBM BATAN Kawasan Puspitek Serpong
28	Joko Irianto., Dr, SKM, M.Kes*	Teknologi Intervensi Kesehatan Masyarakat Badan Penelitian dan Pengembangan Kesehatan Kemenkes Jakarta Percetakan Negara No. 29 , Jakarta 10560
29	June Mellawati, Dr, Prof	Pusat Kajian Sistem Energi Nuklir- BATAN Jl. Kuningan Barat, Mampang Prapatan Jakarta 12710 june mellawatigabatangoid
30	Kristina	Pusat Teknologi dan Intervensi Kesehatan Masyarakat Balitbangkes, Depkes. RI Percetakan Negara No. 29, Jakarta 10560 kristina80@ymail.com
31	Maulida Tri Agustina Miharjo	Fakultas MIPA - Kimia Universitas Gajah Mada, Yogyakarta

Merryani Girsang

Nikham., Drs

Noer Endah Pracoyo

Noni Feryanti., Amd

Nurlaili Ekawati*.

Prayitno., Ir, MT

Raflizar

Rohmad Salam,

Rosalina Dewi

Rosclinda

Pusat Biomedia dan Teknologi Dasar
Keschatan Badan Litbangkes ${ }^{1}$
dan Pusat Teknologi Intervensi Kesehatan Masyarakat
Badan Litbangkes ${ }^{2}$ Kementerian Kesehatan RI
meryanimurhayati@jaikao.com
PAIR - BATAN
JI. Cinere Pasar Jumat Kotak Pos 7002
JKSKL,
Jakarta 12070,
Email: nikham@batan.go,id
Pusat Biomedis dan Teknologi Dasar
Keschatan
Badan Litbang Kes.
Jakarta
Universitas Sarjana Wiyata Taman Siswa Jur. Akutansi
Laboratorium Biofarmasetika Pusat Penelitian Bioteknologi - L.IP1
J. Raya Bogor Km 46, Cibinong 16911, Jawa Barat
E-mail ;murlaili ckawati@gmail.com
Pusat Sains Teknologi Akselerator BATAN
Jl. Babarsari
Yogyakarta 55281
Pusat Teknologi Intervensi Kesehatan masyarakat, Badan penelitian Dan Pengembangan Kesehatan Kementerian Kesehatan RI

Pusat Sains dan Teknologi Bahan Maju, PSTBM-BATAN, Puspiptek, Indonesia
Email: bandri@hatan.go.id salam rdayahoo.com
Pusat Survei Geologi (Badan Geologi)
JI. Diponegoro 57, Bandung
Pusat Biomedis dan Teknologi Dasar Kesehatan, Badan Penelitian dan Pengembangan Keschatan, Kementerian
Keschatan Republik Indonesia., J. Percetakan Negara 23, Jakarta 10560

42 Rosita, MT
43 Rudi Hendro P

44 Sigit., Prof

45 Sihono

Suharjo

Univ. Sarjana Wiyata. Yogyakarta.
Pusat Biomedis dan Teknologi Dasar Keschatan, Balitbangkes, Kemenkes RI. rudi@lithang.depkes bo. id/tiwie@litbang. depkes.go.id
Pusat Teknologi Bahan Bakar Nuklir (PTBN) BATAN
Kawasan Puspiptek Serpong
Tangerang 15314
Pusat Sains Teknologi Akselerator BATAN
J. Babarsari

Yogyakarta 55281
Pusat penelitian dan Pengembangna
Keschatan,
Balitbangkes, Depkes. RI
Percetakan Negara No. 29, Jakarta 10560
hatman@litbang.depkes.go.id
Pusat Sains dan Teknologi Bahan MajuBadan Tenaga Nuklir Nasional
Kawasan Puspiptek Serpong,
Tangerang Selatan 15314
hasyarri@batan.go.id
Pusat Sains dan Teknologi Bahan MajuBATAN
PSTBM-BATAN, Kawasan Puspiptek, Gd. 71 ,
Serpong, Tangerang Selatan,
Pusat Teknologi Intervensi Kesehatan
Masyarakat, Badan Litbangkes,
Kementerian Kesehatan RI
J. Percetakan Negara No. 29, Jakarta 10560

Pusat Biomedis dan Teknologi Dasar Keschatan
Kementrian Kesehatan RI
JI. Percetakan Negara 29
Jakarta Pusat
Pusat Sains dan Telatologi Bahan Maju, PSTBM-BATAN, Puspiptek, Indonesia
Email : maryobatan@gnail.com
Pusat Sains Teknologi Akselerator BATAN
Jl. Babarsari
Yogyakarta 55281

Supriyanto, Drs

Sutijpto., MS

Wahyu Rachmi P

Yenni Rakhmawati

Wagiyo Honggowiranto

Yudhanto Rahmat Pratomo
Yustinus Purwamargapratala

Pusat Sains dan Teknologi Akselerator BATAN
J. Babarsari,

Yogyakarta
Pusat Sains Teknologi Akselerator BATAN
J. Babarsari

Yogyakarta 55281
Pusat Sains Teknologi Akselerator BATAN
J. Babarsari

Yogyakarta 55281
Pusat Sains dan Teknologi Akselerator BATAN
Л. Babarsari,

Yogyakarta
Email: yantibawon@gmail.com
Pusat Sains dan Teknologi Bahan MajuBATAN
Kawasan Puspiptek Serpong, TangerangSelatan 15310
wagiyo@batan.go.id
Pusat Sains dan Teknologi Akselerator BATAN
Л. Babarsari,

Yogyakarta
Fakultas MIPA - Kimia
Universitas Gajah Mada, Yogyakarta
UGM- Yogyakarta
Pusat Sains dan Telatologi Bahan Maju, PSTBM-BATAN, Puspiptek,Indonesia
Email : Y Prataladabatan go id

[^0]: Daftar Isi

