Published Online: 09 February 2016
AIP Conference Proceedings 1710, 030047 (2016); https://doi.org/10.1063/1.4941513
more...View Affiliations
The comparison between two different methods of synthesize of solid electrolyte Li3PO4 as precursor material for developing lithium ion battery, has been performed. The first method is to synthesize Li3PO4 prepared by wet chemical reaction from LiOH and H3PO4 which provide facile, abundant available resource, low cost, and low toxicity. The second method is solid state reaction prepared by Li2CO3 and NH4H2PO4. In addition, the possible morphology identification of comparison between two different methods will also be discussed. The composition, morphology, and additional identification phase and another compound of Li3PO4 powder products from two different reaction are characterized by SEM, EDS, and EIS. The Li3PO4 powder produced from wet reaction and solid state reaction have an average diameter of 0.834 – 7.81 µm and 2.15 – 17.3 µm, respectively. The density of Li3PO4 prepared by wet chemical reaction is 2.238 gr/cm3, little bit lower than the sample prepared by solid state reaction which density is 2.3560 gr/cm3. The EIS measurement result shows that the conductivity of Li3PO4 is 1.7 x 10−9 S.cm−1 for wet chemical reaction and 1.8 x 10−10 S.cm−1 for solid state reaction. The conductivity of Li3PO4 is not quite different between those two samples even though they were prepared by different method of synthesize.
  1. 1. K. Senevirathne, C.S. Day, M.D. Gross, A. Lachgar, N.A.W. Holzwarth, Solid State Ionics 233, 95–101. (2013) https://doi.org/10.1016/j.ssi.2012.12.013, Google ScholarCrossref, CAS
  2. 2. and J.K. Evvy Kartini Iman Kuntoro, Takashi Sakuma, Khairul Basar, Osamu Kamishima, J. Phys. Soc. Japan 79, 54 (2010) https://doi.org/10.1143/JPSJS.79SA.54, Google ScholarCrossref
  3. 3. M. Rathore, A. Dalvi, Solid State Ionics 239, 50–55 (2013) https://doi.org/10.1016/j.ssi.2013.03.022, Google ScholarCrossref, CAS
  4. 4. H. Takahashi, T. Karasawa, T. Sakuma, J.E. Garbarczyk, Solid State Ionics 181, 27–32 (2010) https://doi.org/10.1016/j.ssi.2009.12.001, Google ScholarCrossref, CAS
  5. 5. E. Kartini, M. Nakamura, M. Arai, Y. Inamura, J.W. Taylor, M. Russina, Solid State Ionics 180, 506–509 (2009) https://doi.org/10.1016/j.ssi.2008.09.012, Google ScholarCrossref, CAS
  6. 6. E. Kartini, T. Sakuma, K. Basar, M. Ihsan, Solid State Ionics 179, 706–711 (2008) https://doi.org/10.1016/j.ssi.2008.04.015, Google ScholarCrossref, CAS
  7. 7. E. Kartini, M. Nakamura, M. Arai, Y. Inamura, K. Nakajima, Solid State Ionics 262, 833–836 (2014) https://doi.org/10.1016/j.ssi.2013.12.041, Google ScholarCrossref, CAS
  8. 8. E. Kartini, T.Y.S. Panca Putra, I. Kuntoro, T. Sakuma, K. Basar, O. Kamishima, J. Kawamura, J. Phys. Soc. Japan 79, 54–58 (2010) https://doi.org/10.1143/JPSJS.79SA.54, Google ScholarCrossref
  9. 9. E. Kartini, T.. Putra, A.. Jahya, A. Insani, S. Adams, in:, AIP Proceeding “4th Int. Conf. Adv. Nucl. Sci. Eng. Bali, Indones. Nov.2013,” 2014, pp. 94–100. Google Scholar
  10. 10. E. Kartini, W. Honggowiranto, H. Jodi, A.K. Jahya, 2 (n.d.) 1–10. Google Scholar
  11. 11. A.A. Raskovalov, O.L. Andreev, V.B. Malkov, 357, 3153–3158 (2011) Google Scholar
  12. 12. N. a W. Holzwarth, N.D. Lepley, Y. a. Du, J. Power Sources 196 6870–6876 (2011) https://doi.org/10.1016/j.jpowsour.2010.08.042, Google ScholarCrossref, CAS
  13. 13. M. Ihsan, E. Kartini, S. Suminta, J. Sains Mater. Indones. 217–220 (2006) Google Scholar
  14. 14. N.H. Kaus, A.H. Ahmad, Ionics (Kiel). 15, 197–201 (2009) https://doi.org/10.1007/s11581-008-0252-x, Google ScholarCrossref, CAS
  15. 15. A. Hayashi, K. Iio, H. Morimoto, T. Minami, M. Tatsumisago, Solid State Ionics 175, 637–640 (2004) https://doi.org/10.1016/j.ssi.2003.12.040, Google ScholarCrossref, CAS
  16. 16. S.Q. Zhang, S. Xie, C.H. Chen, Mater. Sci. Eng. B 121, 160–165 (2005). https://doi.org/10.1016/j.mseb.2005.03.018, Google ScholarCrossref
  17. © 2016 AIP Publishing LLC.