Advertisement

Structure and Properties of Biomaterials

  • Sulistioso Giat Sukaryo
  • Agung Purnama
  • Hendra Hermawan
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 58)

Abstract

Biomaterials are materials from which medical devices are made. Based on their chemical composition, they can be polymers, metals, ceramics or composites. Metals are still the most used biomaterials mostly due to their superior mechanical properties and can be found in orthopedic, cardiovascular and dental implants. However, many type of implants can only work properly when polymers or ceramics are also used in pair with metals such as in total knee or hip arthroplasties. Nowadays, biomaterials are no longer seen as inert substances supporting or replacing dysfunctional tissues or organs. They are now required to promote the healing process and self-disintegrate once the process is completed. All the efforts in searching ideal biomaterials are paid to improve the wellness and health of human beings. This chapter is intended to give a brief introduction to the structure and property of biomaterials.

Keywords

Biomaterials Ceramic Metal Polymer Property Structure 

Notes

Acknowledgment

We acknowledge the financial supports from Indonesian Ministry of Research, Technology and Higher Education (SGS), CHU de Québec Research Center (HH), and Natural Science and Engineering Research Council (AP).

References

  1. Balla, V. K., Bodhak, S., Bose, S., & Bandyopadhyay, A. (2010). Porous tantalum structures for bone implants: Fabrication, mechanical and in vitro biological properties. Acta Biomaterialia, 6, 3349–3359.CrossRefGoogle Scholar
  2. Brach del Prever, E. M., BISTOLFI, A., BRACCO, P. & COSTA, L. (2009). UHMWPE for arthroplasty: Past or future? Journal of Orthopaedics and Traumatology, 10, 1–8.Google Scholar
  3. Brandes, E. A., & Brook, G. B. (1992). Smithells Metals Reference Book (7th ed.). Oxford: Butterworth-Heinemann.Google Scholar
  4. Burke, A. & Hasirci, N. (2004). Polyurethanes in biomedical applications. In N. Hasirci, & V. Hasirci (Eds.), Biomaterials. Heidelberg: Springer.Google Scholar
  5. Calin, M., Helth, A., Gutierrez Moreno, J. J., Bönisch, M., Brackmann, V., Giebeler, L., Gemming, T., Lekka, C. E., Gebert, A., Schnettler, R. & Eckert, J. (2014). Elastic softening of β-type Ti–Nb alloys by indium (In) additions. Journal of the Mechanical Behavior of Biomedical Materials, 39, 162–174.Google Scholar
  6. Callister, W. D. & Rethwisch, D. G. (2014). Materials science and engineering: An introduction (9th ed.). New York: Willey.Google Scholar
  7. Carswell, T. S. & Nason H. K. (1944). Effect of environmental conditions on the mechanical properties of organic plastics. In Symposium on Plastics. ASTM.Google Scholar
  8. Carter, C. B., & Norton, M. G. (2007). Ceramic Materials: Science and Engineering. Heidelberg: Springer.Google Scholar
  9. Chawla, K. K. (2012). Composite Materials: Science and Engineering. Heidelberg: Springer.CrossRefGoogle Scholar
  10. Darwis, D., Erizal, Abbas, B., Nurlidar, F. & Putra, D. P. (2015). Radiation processing of polymers for medical and pharmaceutical applications. Macromolecular Symposia, 353, 15–23.Google Scholar
  11. Davidson, J. A., Mishra, A. K., Kovacs, P., & Poggie, R. A. (1994). New surface-hardened, low-modulus, corrosion-resistant Ti-13Nb-13Zr alloy for total HIP arthroplasty. Bio-Medical Materials and Engineering, 4, 231–243.Google Scholar
  12. Dee, K. C., Puleo, D. A. & Bizios, R. (2003). An introduction to tissue-biomaterial interaction. New York: Wiley.Google Scholar
  13. Doni, Z., Alves, A. C., Toptan, F., Gomes, J. R., Ramalho, A., Buciumeanu, M., et al. (2013). Dry sliding and tribocorrosion behaviour of hot pressed CoCrMo biomedical alloy as compared with the cast CoCrMo and Ti6Al4 V alloys. Materials and Design, 52, 47–57.CrossRefGoogle Scholar
  14. Elliott, J. C. (1994). Structure and Chemistry of the Apatite and Other Calcium Orthophosphates. Amsterdam: Elsevier.Google Scholar
  15. Hench, L. L., & Wilson, J. (1993). An Introduction to Bioceramics. Singapore: World Scientific.CrossRefGoogle Scholar
  16. Hollinger, J. O. (2006). An Introduction to Biomaterials. Florida: CRC Press.Google Scholar
  17. Iwasaki, T., Nakatsuka, R., Murase, K., Takata, H., Nakamura, H., & Wakatano, S. (2013). Simple and rapid synthesis of magnetite/hydroxyapatite composite for hyperthermia treatment via a mechano chemicals route. International Journal of Molecular Science, 41, 9365–9378.CrossRefGoogle Scholar
  18. Jaimes, R. F. V. V., Afonso, M. L. C. D. A., Rogero, S. O., Agostinho, S. M. L. & Barbosa, C. A. (2010). New material for orthopedic implants: Electrochemical study of nickel free P558 stainless steel in minimum essential medium. Materials Letters, 64, 1476–1479.Google Scholar
  19. John, C. W. (2000). Biocompatibility of dental casting alloys: A review. Journal of Prosthetic Dentistry, 83, 223–234.CrossRefGoogle Scholar
  20. Kalpakjian, S. (2008). Manufacturing Processes for Engineering Materials (5th ed.). New York: Pearson Education.Google Scholar
  21. Landel, R. F., & Nielsen, L. E. (1993). Mechanical properties of polymers and composites. Bocca Raton: CRC Press.Google Scholar
  22. Lee, B. S., Matsumoto, H., & Chiba, A. (2011). Fractures in tensile deformation of biomedical Co-Cr-Mo-N alloys. Materials Letters, 65, 843–846.CrossRefGoogle Scholar
  23. Legeros, R. Z. (1993). Biodegradation and bioresorption of calcium phosphate ceramics. Clinical Materials, 14, 65–88.CrossRefGoogle Scholar
  24. Leinonen, S., Suokas, E., Veiranto, M., Tormala, P., Waris, T. & Ashammakhi, N. (2002). Healing power of bioadsorbable ciprofloxacin-containing self-reinforced poly(L/DL-lactide 70/30 bioactive glass 13 miniscrews in human cadaver bone. Journal of Craniofacial Surgery, 13, 212–218.Google Scholar
  25. Lewis, G. (2001). Properties of crosslinked ultra-high-molecular-weight polyethylene. Biomaterials, 22, 371–401.CrossRefGoogle Scholar
  26. Long, M., & Rack, H. J. (1998). Titanium alloys in total joint replacement – a materials science perspective. Biomaterials, 19, 1621–1639.CrossRefGoogle Scholar
  27. Maurus, P. B., & Kaeding, C. C. (2004). Bioabsorbable implant material review. Operative Techniques in Sports Medicine, 12, 158–160.CrossRefGoogle Scholar
  28. Middleton, J. C. & Tipton A. J. (2000). Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 21, 2335–2346.Google Scholar
  29. Middleton, J. C. & Tipton, A. J. (1998). Synthetic biodegradable polymers as medical devices. Med Plast Biomater [Online]. http://www.mddionline.com/article/synthetic-biodegradable-polymers-medical-devices.
  30. Miller, R. A., Brady, J. M., & Cutright, D. E. (1977). Degradation rates of oral resorbable implants (polylactates and polyglycolates: rate modification with changes in PLA/PGA copolymer ratios. Journal of Biomedical Materials Research, 11, 711–719.CrossRefGoogle Scholar
  31. Mitsunobu, T., Koizumi, Y., Lee, B.-S., Yamanaka, K., Matsumoto, H., Li, Y., & Chiba, A. (2014). Role of strain-induced martensitic transformation on extrusion and intrusion formation during fatigue deformation of biomedical Co–Cr–Mo–N alloys. Acta Materialia, 81, 377–385.CrossRefGoogle Scholar
  32. Narayan, R., Bose, S., & Bandyopadhyay, A. (2015). Biomaterials Science: Processing, Properties and Applications V: Ceramic Transactions. New Jersey: John Wiley and Sons.CrossRefGoogle Scholar
  33. Navarro, M., Michiardi, A., Castaño, O., & Planell, J. A. (2008). Biomaterials in orthopaedics. Journal of the Royal Society, Interface, 5, 1137–1158.CrossRefGoogle Scholar
  34. Niinomi, M., Nakai, M., & Hieda, J. (2012). Development of new metallic alloys for biomedical applications. Acta Biomaterialia, 8, 3888–3903.CrossRefGoogle Scholar
  35. Park, J., & Lakes, R. S. (2007). Biomaterials: An Introduction. Heidelberg: Springer.Google Scholar
  36. Patel, B., Favaro, G., Inam, F., Reece, M. J., Angadji, A., Bonfield, W., et al. (2012). Cobalt-based orthopaedic alloys: Relationship between forming route, microstructure and tribological performance. Materials Science and Engineering C: Materials for Biological Applications, 32, 1222–1229.CrossRefGoogle Scholar
  37. Rack, H. J., & Qazi, J. I. (2006). Titanium alloys for biomedical applications. Materials Science and Engineering C: Materials for Biological Applications, 26, 1269–1277.CrossRefGoogle Scholar
  38. Ratner, B. D. (2004). Biomaterials Science: Introduction to Materials in Medicine. California: Elsevier Academic Press.Google Scholar
  39. Ratner, B. D., Hoffman, A. S., Schoen, F. J. & Lemons, J. E. (2013). Introduction—biomaterials science: An evolving, multidisciplinary endeavor. In Lemons, J. E. (Ed.), Biomaterials science (3rd ed.). Waltham: Academic Press.Google Scholar
  40. Sáenz, A., Rivera-Muñoz, E., Brostow, W. V., & Castaño, M. (1999). Ceramic biomaterials: An introductory overview. Journal of Materials Education, 21, 297–306.Google Scholar
  41. Sakka, S., Ben, Ayed, F. & Bouaziz, J. (2012). Mechanical properties of tricalcium phosphate–alumina composites. In IOP conference series: materials science and engineering, 28, 012028.Google Scholar
  42. Smethurst, E. (1981). A new stainless steel alloy for surgical implants compared to 316 S12. Biomaterials, 2, 116–119.CrossRefGoogle Scholar
  43. Taarea, D. & Bakhtiyarov, S. I. (2004). 14 - General physical properties. In Totemeier, W. F. G. C. (Ed.), Smithells metals reference book (8th ed.). Oxford: Butterworth-Heinemann.Google Scholar
  44. Talha, M., Behera, C. K., & Sinha, O. P. (2013). A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications. Materials Science and Engineering C: Materials for Biological Applications, 33, 3563–3575.CrossRefGoogle Scholar
  45. Thamaraiselvi, T. V., & Rajeswari, S. (2004). Biological evaluation of bioceramics materials – a review. Trends in Biomaterials and Artificial Organs, 18, 9–17.Google Scholar
  46. Ulum, M. F., Arafat, A., Noviana, D., Yusop, A. H., Nasution, A. K. Abdul Kadir, M. R. & Hermawan, H. (2014). In vitro and in vivo degradation evaluation of novel iron-bioceramic composite for bone implant application. Materials Science and Engineering C: Materials for Biological Applications, 36, 336–344.Google Scholar
  47. Vallet-Regí, M. (2010). Evolution of bioceramics within the field of biomaterials. Comptes Rendus Chimie, 13, 174–185.CrossRefGoogle Scholar
  48. Walker, J. C., Cook, R. B., Murray, J. W., & Clare, A. T. (2013). Pulsed electron beam surface melting of CoCrMo alloy for biomedical applications. Wear, 301, 250–256.CrossRefGoogle Scholar
  49. Wang, Y. B., Zheng, Y. F., Wei, S. C., & Li, M. (2011). In vitro study on Zr-based bulk metallic glasses as potential biomaterials. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 96, 34–46.CrossRefGoogle Scholar
  50. Ward, I. M. & Sweeney, J. (2012). Mechanical properties of solid polymers. New York: Wiley.Google Scholar
  51. Yan, Y., Neville, A., & Dowson, D. (2007). Tribo-corrosion properties of cobalt-based medical implant alloys in simulated biological environments. Wear, 263, 1105–1111.CrossRefGoogle Scholar
  52. Zdrahala, R. J., & Zdrahala, I. J. (1999). Biomedical applications of polyurethanes: a review of past promises, present realities, and a vibrant future. Journal of Biomaterials Applications, 14, 67–90.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.National Nuclear Energy Agency of IndonesiaTangerang SelatanIndonesia
  2. 2.Laval UniversityQuebec CityCanada

Personalised recommendations