Vol 20, No 2 (2016) > Material and Metalurgical Engineering >

The Effect of Irradiation of Fe and Ar Ion on the Surface Morphology of Diamond Thin Film Related to the Magnetoresistance Property

Salim Mustofa 1 , Setyo Purwanto 1 , Kenji Mishima 2

Affiliations:

  1. Center for Science and Technology of Advanced Materials, National Nuclear Energy Agency (PSTBM-BATAN) PUSPIPTEK Serpong, Tangerang 15314, Indonesia
  2. Department of Chemical Engineering, Faculty of Engineering, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan

 

Abstract: The irradiation of Fe and Ar ion was applied on the surface of diamond/Si thin film to know its effect on the morphology of thin film.The magnetoresistance property was also studied. Ion irradiation treatment using Fe ion followed by argon ion at the energy of 70 keV and a dose of 1 x 1015 ion/cm2 have been conducted on the surface of two types of thin film, diamond/Si (111) and diamond/Si(100). Both thin films were made by using a CVD method, and the thickness of the thin film is 1000-nm. From simulations using the software called Stopping and Range of Ions in Matter (SRIM), it is known that Fe and Argon ion penetration into the surface of the thin film are respectively 512 and 603 Angstroms. After that the thin film sample was irradiated with ion Fe and Ar, and the property behavior of the morphological change of thin film were studied through Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The grain size range of thin filmon diamond films / Si (100) was reduced from 115-322 nm to 147-169 nm, suggesting the effect of irradiation on the surface morphology. The magnetoresistance property is approximately 0.15% at room temperature and magnetic field external H = 0.8 Tesla.
Keywords: diamond/Si, grain size, ion iradiation Feand Ar, magnetoresistance, morphology of thin film
Published at: Vol 20, No 2 (2016) pages: 93-96
DOI:

Access Counter: 511 views, 477 PDF downloads, .

Full PDF Download

References:

G. Devaraju, S.V.S. Nageswara Rao, N. Srinivasa Rao, V. Saikiran, T.K. Chan, T. Osipowicz, M.B.H. Breese, A.P. Pathak, Radiat. Eff. Defects in Solids. 167/7 (2012) 506.

Martin Kalbac, Ossi Lehtinen, et al, Adv. Mater (2012). DOI: 10.1002/adma.201203807.

P. D. Edmondson, Y. Zhang, S. Moll, F. Namavar, W.J. Weber. Acta Materialia 60 (2012) 5408.

S.B. Felch, M.I. Current and M.C. Taylor, Proceedings of PAC2013, Pasadena, CA USA (2013) 740.

S-X Xue, Q-T Li, X-R Zhao, Q-Y Shi, Z-G Li, YP Liu, J. Nanomater. (2014) 5.

S-I. Honda, R. Tamura, Y. Nosho, A. Tsukagoshi, M. Niibe, M. Terasawa, R. Hirase, H. Izumi, H. Yoshioka, K. Niwase, E. Taguchi, K-Y Lee, M. Oura. Jpn J. Appl. Phys. 53/2S (2014). http://dx.doi.org/10.7567/ JJAP.53.02BD06.

J-H Deng, X-G Hou, L. Cheng, F-J. Wang, B. Yu, G-Z. Li, D-J. Li, G-A. Cheng, S. Wu. ACS Appl. Mater. Interfaces. 6/7 (2014) 5137.

C.D. Cress, J.J. McMorrow, J.T. Robinson, B.J. Landi, S.M. Hubbard, S.R. Messenger. Electronics. 1/1 (2012) 23.

A. AnsÛn-Casaos, J.A. PuÈrtolas, F.J. Pascual et al, Appl. Surf. Sci. 301 (2014) 264.

F. Valencia, J.D. Mella, R.I. Gonzalez, M.K. Tichauer, E.M. Bringa, Carbon. 93 (2015) 458.

R.R. Nair, M. Sepioni, I-Ling Tsai, Nature Phys. 8 (2012) 199.

P. Esquinazi, H. Wolfram, D. Spemann. IEEE Trans. Magn. 49/8 (2013) 4668.

Z. Osváth, G. Vértesy, L. Tapasztó, F. Wéber, Z. E. Horváth, J. Gyulai, L.P. Biró, Phys. Rev. B 72 (2005) 045429.

H.M. Kim, H.S. Kim, S.K. Park, J. Joo, T.J. Lee, C.J. Lee, J. Appl. Phys. 97 (2005) 026103.

S. Purwanto, I. Sakamoto, Makara J. Technol. 18/2 (2014) 63.