Full
Published Online: 19 April 2016
AIP Conference Proceedings 1725, 020101 (2016); https://doi.org/10.1063/1.4945555
more...View Affiliations
As a biodegradableplastic, polylactideacid (PLA) can be blended with polyethylene glycol (PEG) to form a polymer blend because PEG has a good miscibility with PLA. Furthermore, this paper study the functional groups of PLA-PEG400 blend using direct casting to produce matrix film. Fourier Transform Infrared (FTIR) and Raman spectroscopy was used to identify alteration of functional group PLA-PEG400 blend. Absorbance and frequency wavenumber were used to observe any changing among functional group. In general, PLA-PEG blend did not produce a new configuration or chemical properties although some functional groups tended to decrease. PLA-PEG400 film spectra showed a similaritycompared to those of neat PLA because of each pristine polymer. However, FTIR and Raman investigated reducing carbonyl group of PLA with PEG400 addition and followed improving CH-COC bonding. Methyl group represented CH3symmetricchanged both the shift and absorbance.FTIR and Raman spectroscopy observed increasing hydrogen bonding with increasing PEG400 addition where a largest was found at PEG 10% and appeared at frequency range from 3400 cm−1 to 3600 cm−1. According to PEG400 addition, a FTIR measuredenhancing crystalline region.
  1. 1. M. Carla, B. Goncalves, A. Joao, P. Coutinho and I. M. Marrucho,“Optical properties” in Poly(Lactic Acid) Synthesis, Structures, properties, processing, and application, edited by R. Auras, L-T. Lim, E.M. Susan and H. Tsuji (John Wiley & Sons. Inc., Hoboken, New Jersey 2010), pp. 97–110. Google Scholar
  2. 2. R. M. Rasal, A.V. Janorkar and D.E. Hirt, Prog. Polym. Sci 35, 338–356 (2010). https://doi.org/10.1016/j.progpolymsci.2009.12.003, Google ScholarCrossref, CAS
  3. 3. S. Slomkowski, S. Penczek and A. Duda, Polym. Adv. Technol 25, 436–447 (2014). https://doi.org/10.1002/pat.3281, Google ScholarCrossref, CAS
  4. 4. S. Saeidlou, M.A. Hunaeult, H.B. Li, C.B. Park, Prog. Polym. Sci 37, 1657–1677 (2010). https://doi.org/10.1016/j.progpolymsci.2012.07.005, Google ScholarCrossref
  5. 5. C. P. Martino, A. Jimenez, R.A. Ruseckai and L. Averous, Polym. Adv. Technol 22, 2206–2213 (2011). https://doi.org/10.1002/pat.1747, Google ScholarCrossref, CAS
  6. 6. B. Chieng, N.A. Ibrahim, W. Yunus, M.Z. Hussein, Polymer 6, 93–104 (2014). https://doi.org/10.3390/polym6010093, Google ScholarCrossref
  7. 7. R. Auras, L-T. Lim, E.M. Susan and H. Tsuji. Poly (Lactic Acid) Synthesis, Structures, properties, processing, and application (John Wiley & Sons. Inc., Hoboken, New Jersey, 2010), pp. 158–162. Google ScholarCrossref
  8. 8. A. K. Mohapatra, S. Mohanty and S.K. Nayak, Polym. Compos 35, 283–293 (2014). https://doi.org/10.1002/pc.22660, Google ScholarCrossref, CAS
  9. 9. K. Sungsanit, N. Kao and S.N. Bhattacharya, Korea-Australia Rheology J. 22, 177–185 (2010). Google Scholar
  10. 10. M. Baiardo, G. Frisoni, M. Scandola, M. Rimelen, D. Lips, K. Ruffiex and E. Wintermantel, J Appl Polym Sci 90, 1731–1738 (2001). https://doi.org/10.1002/app.12549, Google ScholarCrossref
  11. 11. Z. Kulinski and E. Piorkowska, Polymer 46,10290–10300 (2005). https://doi.org/10.1016/j.polymer.2005.07.101, Google ScholarCrossref, CAS
  12. 12. J. Ahmed, K.V. Sunil and R. Aura, J Food Sci 75, 17–24 (2010). https://doi.org/10.1111/j.1750-3841.2009.01496.x, Google ScholarCrossref
  13. 13. F. Li, S. Zhang, J. Ling and J. Wang, Polymer. Adv. Tech. 26, 465–475 (2015). https://doi.org/10.1002/pat.3475, Google ScholarCrossref, CAS
  14. 14. G. Kister, G. Cassanas and M. Vert, Polymer 39, 267–273 (1998). https://doi.org/10.1016/S0032-3861(97)00229-2, Google ScholarCrossref, CAS
  15. 15. D. Garlott, J Polym Environ 9, 63–84 (2001). https://doi.org/10.1023/A:1020200822435, Google ScholarCrossref
  16. 16. K. Yuniarto, B.A. Welt, Y. A. Purwanto, K. P. Purwadaria, A. Abdellatief, T. C. Sunarti, and S. Purwanto, J Appl Packaging Res 6, 51–57 (2014). Google Scholar
  17. 17. K. Yuniarto, B.A. Welt, Y.A. Purwanto, K.P. Purwadaria, A. Abdellatief, T.C. Sunarti, and S. Purwanto, J Polym Res, (2015). Google Scholar
  18. 18. K. Boua-in, N. Chaiyut and B. Ksapabutr, Optoelectron Adv Mat Rapid Commun 4, 1404–1407 (2010). Google ScholarCAS
  19. 19. M. Tanaka and R.J. Young, Macromolecules 39, 3312–3321 (2006). https://doi.org/10.1021/ma0526286, Google ScholarCrossref, CAS
  20. Published by AIP Publishing.