Abstract
As a biodegradableplastic, polylactideacid (PLA) can be blended with polyethylene glycol (PEG) to form a polymer blend because PEG has a good miscibility with PLA. Furthermore, this paper study the functional groups of PLA-PEG400 blend using direct casting to produce matrix film. Fourier Transform Infrared (FTIR) and Raman spectroscopy was used to identify alteration of functional group PLA-PEG400 blend. Absorbance and frequency wavenumber were used to observe any changing among functional group. In general, PLA-PEG blend did not produce a new configuration or chemical properties although some functional groups tended to decrease. PLA-PEG400 film spectra showed a similaritycompared to those of neat PLA because of each pristine polymer. However, FTIR and Raman investigated reducing carbonyl group of PLA with PEG400 addition and followed improving CH-COC bonding. Methyl group represented CH3symmetricchanged both the shift and absorbance.FTIR and Raman spectroscopy observed increasing hydrogen bonding with increasing PEG400 addition where a largest was found at PEG 10% and appeared at frequency range from 3400 cm−1 to 3600 cm−1. According to PEG400 addition, a FTIR measuredenhancing crystalline region.
REFERENCES
- 1. M. Carla, B. Goncalves, A. Joao, P. Coutinho and I. M. Marrucho,“Optical properties” in Poly(Lactic Acid) Synthesis, Structures, properties, processing, and application, edited by R. Auras, L-T. Lim, E.M. Susan and H. Tsuji (John Wiley & Sons. Inc., Hoboken, New Jersey 2010), pp. 97–110. Google Scholar
- 2. R. M. Rasal, A.V. Janorkar and D.E. Hirt, Prog. Polym. Sci 35, 338–356 (2010). https://doi.org/10.1016/j.progpolymsci.2009.12.003, Google ScholarCrossref, CAS
- 3. S. Slomkowski, S. Penczek and A. Duda, Polym. Adv. Technol 25, 436–447 (2014). https://doi.org/10.1002/pat.3281, Google ScholarCrossref, CAS
- 4. S. Saeidlou, M.A. Hunaeult, H.B. Li, C.B. Park, Prog. Polym. Sci 37, 1657–1677 (2010). https://doi.org/10.1016/j.progpolymsci.2012.07.005, Google ScholarCrossref
- 5. C. P. Martino, A. Jimenez, R.A. Ruseckai and L. Averous, Polym. Adv. Technol 22, 2206–2213 (2011). https://doi.org/10.1002/pat.1747, Google ScholarCrossref, CAS
- 6. B. Chieng, N.A. Ibrahim, W. Yunus, M.Z. Hussein, Polymer 6, 93–104 (2014). https://doi.org/10.3390/polym6010093, Google ScholarCrossref
- 7. R. Auras, L-T. Lim, E.M. Susan and H. Tsuji. Poly (Lactic Acid) Synthesis, Structures, properties, processing, and application (John Wiley & Sons. Inc., Hoboken, New Jersey, 2010), pp. 158–162. Google ScholarCrossref
- 8. A. K. Mohapatra, S. Mohanty and S.K. Nayak, Polym. Compos 35, 283–293 (2014). https://doi.org/10.1002/pc.22660, Google ScholarCrossref, CAS
- 9. K. Sungsanit, N. Kao and S.N. Bhattacharya, Korea-Australia Rheology J. 22, 177–185 (2010). Google Scholar
- 10. M. Baiardo, G. Frisoni, M. Scandola, M. Rimelen, D. Lips, K. Ruffiex and E. Wintermantel, J Appl Polym Sci 90, 1731–1738 (2001). https://doi.org/10.1002/app.12549, Google ScholarCrossref
- 11. Z. Kulinski and E. Piorkowska, Polymer 46,10290–10300 (2005). https://doi.org/10.1016/j.polymer.2005.07.101, Google ScholarCrossref, CAS
- 12. J. Ahmed, K.V. Sunil and R. Aura, J Food Sci 75, 17–24 (2010). https://doi.org/10.1111/j.1750-3841.2009.01496.x, Google ScholarCrossref
- 13. F. Li, S. Zhang, J. Ling and J. Wang, Polymer. Adv. Tech. 26, 465–475 (2015). https://doi.org/10.1002/pat.3475, Google ScholarCrossref, CAS
- 14. G. Kister, G. Cassanas and M. Vert, Polymer 39, 267–273 (1998). https://doi.org/10.1016/S0032-3861(97)00229-2, Google ScholarCrossref, CAS
- 15. D. Garlott, J Polym Environ 9, 63–84 (2001). https://doi.org/10.1023/A:1020200822435, Google ScholarCrossref
- 16. K. Yuniarto, B.A. Welt, Y. A. Purwanto, K. P. Purwadaria, A. Abdellatief, T. C. Sunarti, and S. Purwanto, J Appl Packaging Res 6, 51–57 (2014). Google Scholar
- 17. K. Yuniarto, B.A. Welt, Y.A. Purwanto, K.P. Purwadaria, A. Abdellatief, T.C. Sunarti, and S. Purwanto, J Polym Res, (2015). Google Scholar
- 18. K. Boua-in, N. Chaiyut and B. Ksapabutr, Optoelectron Adv Mat Rapid Commun 4, 1404–1407 (2010). Google ScholarCAS
- 19. M. Tanaka and R.J. Young, Macromolecules 39, 3312–3321 (2006). https://doi.org/10.1021/ma0526286, Google ScholarCrossref, CAS
Published by AIP Publishing.
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.