Logo
Login     Register     Shibboleth      Mobile      Cart

Microstructural study of cetyltrimethylammonium bromide / 1-butanol / salt / water system — SANS and 2D-NOESY analysis

K. Kuperkar,a A. Patriati,b E.G.R. Putra,b K. Singh,c D.G. Marangoni,c P. Bahadura

aDepartment of Chemistry, Veer Narmad South Gujarat University, Surat 395 007, India.

bNeutron Scattering Laboratory, National Nuclear Energy Agency of Indonesia, BATAN, Kawasan Puspiptek Serpong, Tangerang 15314, Indonesia.

cDepartment of Chemistry, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada.

Corresponding author: Ketan C. Kuperkar (e-mail: ).

Published on the web 1 March 2012.

Received May 25, 2011. Accepted August 19, 2011.


Canadian Journal of Chemistry, 2012, 90(3): 314-320, https://doi.org/10.1139/v11-155

Abstract

Interaction of 1-butanol (BuOH) with a cationic surfactant, cetyltrimethylammonium bromide (CTAB) aggregate, in water and salt solution has been studied by viscometry, small-angle neutron scattering (SANS), and 2D-NMR techniques. The experimental results are interpreted in terms of a possible micellar growth occurring in the presence of added alcohol and salt. It was observed that the addition of BuOH strongly influences the viscosity of the CTAB/salt micellar system, reaching a peak viscosity at about 0.5% w/v of BuOH over a range of salt concentrations. Scattering measurements support the idea of a structural transformation by the observation of a spectral shift (broadening) as the total concentration of surfactant varies, indicating a decrease in the intermicellar distance and narrow size distribution. The chemical shift from 1H NMR measurements gave complementary data on the solubilization of BuOH in CTAB micelles, whereas the expected locus (site) of the additive added to the surfactant including the dynamics of the molecules in micellar aggregates were successfully correlated by significant and positive cross peaks obtained from two-dimensional nuclear Overhauser effect spectroscopy (2D-NOESY).

Keywords: micellar growth, solubilization, viscosity, SANS, 2D-NOESY


References

  • 1
    Eicke, H.-F. Surfactants in Nonpolar Solvents, Aggregation and Micellization. In Topics in Current Chemistry: Micelles; Springer: Berlin, 1980; Vol. 87, pp 85–145. Google Scholar
  • 2
    Rosen, M. J. Surfactants and Interfacial Phenomena, 3rd ed.; Wiley–Interscience: New York, 1982. Google Scholar
  • 3
    Fainerman V B, Miller R, Aksenenko E V. 2002. Adv. Colloid Interface Sci. 96(1–3): 339 CrossrefGoogle Scholar.
  • 4
    Zana R. 1995. Adv. Colloid Interface Sci. 57: 1 CrossrefGoogle Scholar.
  • 5
    Imae T, Abe A, Taguchi Y, Ikeda S. 1986. J. Colloid Interface Sci. 109(2): 567 CrossrefGoogle Scholar.
  • 6
    Prasad Ch D, Singh H N. 1990. Colloids Surf. 50: 37 CrossrefGoogle Scholar.
  • 7
    (a) Candau S, Zana R. 1981. J. Colloid Interface Sci. 84(1): 206 CrossrefGoogle Scholar;
       (b) Zana R, Yiv S, Strazielle C, Lianos P. 1981. J. Colloid Interface Sci. 80(1): 208 CrossrefGoogle Scholar;
       (c) Candau S, Hirsch E, Zana R. 1982. J. Colloid Interface Sci. 88(2): 428 CrossrefGoogle Scholar.
  • 8
    Attwood D, Mosquera V, Rodriguez J, Garcia M, Suarez M J. 1994. Colloid Polym. Sci. 272(5): 584 CrossrefGoogle Scholar.
  • 9
    González-Pérez A, Czapkiewicz J, Del Castillo J L, Rodríguez J R. 2003. J. Colloid Interface Sci. 262(2): 525 CrossrefGoogle Scholar.
  • 10
    Kuperkar K, Abezgauz L, Danino D, Verma G, Hassan P A, Aswal V K, Varade D, Bahadur P. 2008. J. Colloid Interface Sci. 323(2): 403 CrossrefGoogle Scholar.
  • 11
    Hoffmann H, Ebert G. 1988. Angew. Chem. Int. Ed. Engl. 27(7): 902 CrossrefGoogle Scholar.
  • 12
    Kreke P J, Magid L J, Gee J C. 1996. Langmuir 12(3): 699 CrossrefGoogle Scholar.
  • 13
    Førland G M, Samseth J, Høiland H, Mortensen K. 1994. J. Colloid Interface Sci. 164(1): 163 CrossrefGoogle Scholar.
  • 14
    (a) González-Pérez A J, Galán J, Rodríguez J R. 2004. Fluid Phase Equilib. 224(1): 7 CrossrefGoogle Scholar;
       (b) Galán J J, Del Castillo J L, González-Pérez A, Fuentes-Vázquez V, Rodríguez J R. 2007. J. Therm. Anal. Calorim. 87(1): 159 CrossrefGoogle Scholar.
  • 15
    Missel P J, Mazer N A, Benedek G B, Young C Y, Carey M C. 1980. J. Phys. Chem. 84(9): 1044 CrossrefGoogle Scholar.
  • 16
    Lin T L, Chen S H, Gabriel N E, Roberts M F. 1987. J. Phys. Chem. 91(2): 406 CrossrefGoogle Scholar.
  • 17
    Manne S, Schaffer T E, Huo Q, Hansma P K, Morse D E, Stucky G D, Aksay I A. 1997. Langmuir 13(24): 6382 CrossrefGoogle Scholar.
  • 18
    Shiloach A, Blankschtein D. 1998. Langmuir 14(25): 7166 CrossrefGoogle Scholar.
  • 19
    Abezgauz L, Kuperkar K, Hassan P A, Ramon O, Bahadur P, Danino D. 2010. J. Colloid Interface Sci. 342(1): 83 CrossrefGoogle Scholar.
  • 20
    Hawrylak B E, Marangoni D G. 1999. Can. J. Chem. 77(7): 1241 Link, ISIGoogle Scholar. Abstract
  • 21
    Kuperkar K C, Mata J P, Bahadur P. 2011. Colloids Surf. Physicochem. Eng. Aspects 380(1–3): 60 CrossrefGoogle Scholar.
  • 22
    Rao I V, Ruckenstein E J. 1986. J. Colloid Interface Sci. 113(2): 375 CrossrefGoogle Scholar.
  • 23
    (a) Putra E G R, Bharoto E, Santoso A, Ikram J. 2009. Nucl. Instrum. Methods Phys. Res. A 600(1): 198 CrossrefGoogle Scholar;
       (b) Putra E G R, Ikram A, Santoso E, Bharoto B. 2007. J. Appl. Crystallogr. 40: s447 CrossrefGoogle Scholar;
       (c) Giri Rachman Putra E, Bharoto , Santoso E, Mulyana Y A. 2007. Neutron News 18(2): 23 CrossrefGoogle Scholar.
  • 24
    Dewhurst, C. GRASP: Graphical Reduction and Analysis SANS Program for Matlab. http://www.ill.eu/fileadmin/users files/Other Sites/lss-grasp/grasp_main.html; Institut Laue-Langevin: Grenoble, France, 2001–2007. Google Scholar
  • 25
    Kline S R. 2006. J. Appl. Crystallogr. 39(6): 895 CrossrefGoogle Scholar.
  • 26
    Hayter J B, Penfold J. 1983. Colloid Polym. Sci. 261(12): 1022 CrossrefGoogle Scholar.
  • 27
    Yuan H Z, Luo L, Zhang L, Zhao S, Mao S Z, Yu J Y, Shen L F, Du Y R. 2002. Colloid Polym. Sci. 280(5): 479 Crossref, ISIGoogle Scholar.
  • 28
    Shafiq Ullah A K M, Kamal I. 2007. BRAC Univ. J. 4(1): 59 Google Scholar.
  • 29
    Chen S H, Sheu E Y, Kalus J, Hoffman H. 1988. J. Appl. Crystallogr. 21(6): 751 CrossrefGoogle Scholar.
  • 30
    Engelskirchen S, Acharya D P, Garcia-Roman M, Kunieda H. 2006. Colloids Surf. A Physicochem. Eng. Asp. 279(1–3): 113 CrossrefGoogle Scholar.
  • 31
    Mao S Z, Du Y R. 2003. Acta Phys. Chim. Sin. 19(7): 675 Google Scholar.
  • 32
    McLachlan A A, Singh K, Marangoni D. 2010. Colloid Polym. Sci. 288(6): 653 CrossrefGoogle Scholar.
Connect With UsSign up for E-AlertsAlertsRead our BlogCSP BlogFacebookTwitterYouTubeLinked In
RSS