Published Online: 17 April 2015
AIP Conference Proceedings 1656, 020001 (2015); https://doi.org/10.1063/1.4917088
more...View Affiliations
Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 2–10 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 30–50 Å has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol, octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations.
  1. 1. R.A.L. Jones, Soft Condensed Matter, Oxford University Press, 2002. Google ScholarCrossref
  2. 2. J.V. Joshi, V.K. Aswal, P.S. Goyal, “SANS Study of Micellar Structures on Oil Solubilization” in Neutron and X-ray Scattering in Materials Science and Biology, edited by A. Ikram et al., AIP Conference Proceeding 989, American Institute of Physics, Melville, NY, 2008, pp. 259–263. Google ScholarScitation
  3. 3. H. Kunieda, K. Ozawa, K.L. Huang, J. Phys. Chem. B 102, 831–838 (1998). https://doi.org/10.1021/jp9726908, Google ScholarCrossref, CAS
  4. 4. E.G.R. Putra, A. Ikram, B.S. Seong, J. Nucl. Instrum. Methods Phys. Res. A 600, 288–291 (2009). https://doi.org/10.1016/j.nima.2008.11.046, Google ScholarCrossref, CAS
  5. 5. M. Mishra, et al., Intl. J. Pharm. Tech. Res. 1(4), 1354–1365 (2009). Google ScholarCAS
  6. 6. S.P. Moulik, Curr. Sci. 71(5), 368–376 (1996). Google ScholarCAS
  7. 7. V.B. Fainerman, R. Miller, E.V. Aksenenko, Adv. Colloid Interface Sci. 96, 339–359 (2002). https://doi.org/10.1016/S0001-8686(01)00088-4, Google ScholarCrossref, CAS
  8. 8. A. Patriati, E.G.R. Putra, “Ellipsoid to Worm-Like Micelle Structure Transition Revealed by Small-Angle Neutron Scattering Technique” in the Proceeding of 2nd International Conference on Mathematics and Natural Sciences (ICMNS) 2008, edited by B. Prijamboedi et al., Institut Teknologi Bandung, 2009, pp. 805–811. Google Scholar
  9. 9. A. Patriati, E.G.R. Putra, B.S. Seong, “Effect of A Long Chain Carboxylate Acid on Sodium Dodecyl Sulfate Micelle Structure: A SANS Study”, in the Neutron and X-Ray Scattering in Advancing Materials Research, edited by A. Saat et al., AIP Conference Proceeding 1202, American Institute of Physics, Melville, NY, 2009, pp.40–43. Google Scholar
  10. 10. G.M. Førland, J. Samseth, M.I. Gjerde, H. Høiland, A.Ø. Jensen, K. Mortensen, J. Colloid Interface Sci. 203, 328–334 (1998). https://doi.org/10.1006/jcis.1998.5539, Google ScholarCrossref, CAS
  11. 11. E. Caponetti, D.C. Martino, M.A. Floriano, R. Triolo, Langmuir 13, 3277–3283 (1997). https://doi.org/10.1021/la961013m, Google ScholarCrossref, CAS
  12. 12. G.M. Førland, J. Samseth, H. Høiland, K. Mortensen, J. Colloid Interface Sci. 164, 163–167 (1994). https://doi.org/10.1006/jcis.1994.1154, Google ScholarCrossref
  13. 13. H. Høiland, M.I. Gjerde, C. Mo, E. Lie, Colloids Surface A 183 – 185, 651–660 (2001). https://doi.org/10.1016/S0927-7757(01)00520-9, Google ScholarCrossref
  14. 14. E.G.R. Putra, A. Ikram, E. Santoso, B. Bharoto, J. Appl. Cryst. 40, s447–s452 (2007). https://doi.org/10.1107/S002188980700605X, Google ScholarCrossref, CAS
  15. 15. E.G.R. Putra, Bharoto, E. Santoso, A. Ikram, J. Nucl. Instrum. Method Phys. Res. A 600, 198–202 (2009). https://doi.org/10.1016/j.nima.2008.11.129, Google ScholarCrossref, CAS
  16. 16. C. Dewhurst, GRASP: Graphical Reduction and Analysis SANS Program for Matlab, /http://www.ill.eu/fileadmin/users_files/Other_Sites/lss-grasp/grasp_main.html, Institut Laue Langevin, 2001–2007. Google Scholar
  17. 17. S.R. Kline, J. Appl. Cryst. 39, 895–400 (2006). https://doi.org/10.1107/S0021889806035059, Google ScholarCrossref, CAS
  18. 18. C. Tanford, The Hydrophobic Effect: Formation of Micelle and Biological Membranes, New York, Willey, 1980. Google Scholar
  19. 19. V. K. Aswal, P. S. Goyal, Phys. Rev. E 61(3), 2947–2953 (2000). https://doi.org/10.1103/PhysRevE.61.2947, Google ScholarCrossref, CAS
  20. © 2015 AIP Publishing LLC.