Full
Published Online: 19 April 2016
AIP Conference Proceedings 1725, 020010 (2016); https://doi.org/10.1063/1.4945464
Surface treatment by implantation with nitrogen-ion was performed on the commercial feritic high strength steel AISI 410 which is termed for high temperature applications. The aim of this research was focused on the surface modification to improve its high temperature oxidation property in the early stages. Ion implantation was carried out at acceleration energy of 100 KeV and ion current 10 mA for 30, 60 and 90 minutes. The samples were subjected to the high temperature oxidation test by means of thermogravimetry in a magnetic suspension balance (MSB) at 500 °C for 5 hours. The scanning electron microscopy (SEM), X-ray diffraction spectrometry (XRD) and Vickers Hardness measurement were used for sample characterization. The formation of ferro-nitride phase after implantation did not occur, however a thin layer considered to contain nitrogen interstitials was detected. The oxidation of both samples before and after implantation followed parabolic kinetics indicating inward growth of oxide scale characteristically due to diffusion of oxygen anions towards matrix surface. After oxidation test relativelly stable oxide scales were observed. Oxidation rates decreased proportionally with the increasing of implantation time due to the formation of oxide layer which is considered to be effectiv inhibitor for the oxygen diffusion.
  1. 1. The European Stainless Steel Development Association, “Stainless Steel at High Temperature,” Materials and Applications Series, Volume 18. Google Scholar
  2. 2. L. Antoni and B. Baroux, “Cyclic Oxidation Behaviour of Stainless Steels,” Application to the Automotive Exhaust Lines (La Revue De Métallurgie-CIT Février 2002) Pp. 178–188. Google Scholar
  3. 3. J. Charles, J. D. Mithieux, P. O. Santacreu, and L. Peguet, “The Ferritic Stainless Steel Family: The Appropriate Answer To Nickel Volatility,” Arcelormittal Stainless (Arcelormittal R&D, France, 2009) pp. 124–139. Google Scholar
  4. 4. P. Vlcak, F. Cerny, Z. Weiss, S. Danis, and J. Sepitka, “J. Nanomaterials 2013, (2013). https://doi.org/10.1155/2013/475758, Google ScholarCrossref
  5. 5. R. Hatada, S. Flege, A. Bobrich, W. Ensinger, and K. Baba, Surf. Coat. Tech. 256, 23–29 (2014). https://doi.org/10.1016/j.surfcoat.2013.11.051, Google ScholarCrossref, CAS
  6. 6. M. J. Bennet and A. T. Tuson, Mater. Sci. Eng., A116, 79–87 (1989). https://doi.org/10.1016/0921-5093(89)90131-7, Google ScholarCrossref
  7. 7. G. Jatisukamto, V. Malau, M. N. Ilman dan P. T. Iswanto, J. Teknik Mesin Rotasi 14 (2), 17–22 (2012). Google Scholar
  8. 8. C. M. Abreu, M. J. Cristóbal, R. Figueroa, G. Pena and M. C. Pérez, Surf. Interface Anal. 42 (6-7), 592–596 (2010). https://doi.org/10.1002/sia.3498, Google ScholarCrossref, CAS
  9. 9. Carlos Frederico B. W, Marcos Antônio Z. W, Ruth Hinrichs, A. N. Becker and F. B. Barletta, JOE 35 (11), (2009). Google Scholar
  10. 10. D. S. Khaerudin, M.A. Othman, S. Mahzan, P. Untoro, and D. Sebayang, Procedia Eng. 23, 760–764 (2011). https://doi.org/10.1016/j.proeng.2011.11.2577, Google ScholarCrossref
  11. 11. R. Salam, B. Bandriyana, A. Dimyati, “Uji Fungsi Magnetic Suspension Balance (MSB) untuk Penelitian Material Suhu Tinggi,” Seminar Nasional IX SDM Teknologi Nuklir (Sekolah Tinggi Teknologi Nuklir Badan Tenaga Nuklir Yogyakarta, 2013), pp. 242–248. Google Scholar
  12. 12. Mudjijana, A. Rifai, and T. Suyitno, “Pengaruh Implantasi Ion Nitrogen Pada Baja Karbon Medium terhadap Ketahanan Lelah,” Proseding Seminar Nasional Teknologi Akselerator dan Aplikasinya 2 (Pusat Penelitian dan Pengembangan Teknologi Maju, Badan Tenaga Nuklir Nasional, 2000), pp. 87–91. Google Scholar
  13. 13. G. Jatisukamto, V.Malau, M. N. Ilman, and P. T. Iswanto, J. Ilmiah Teknik Mesin 5 (1), 14–19 (2011). Google Scholar
  14. 14. A. Dimyati, H. J. Penkalla, P. Untoro, D. Naumenko, W. J. Quadakkers, J. Mayer, Z. Metallkd. 94 (3), 180–187 (2003). https://doi.org/10.3139/146.030180, Google ScholarCrossref, CAS
  15. 15. T. Chuto, F. Nagase, T. Fuketa, Nucl. Eng. Technol. 41 (2), 163–170 (2009). https://doi.org/10.5516/NET.2009.41.2.163, Google ScholarCrossref, CAS
  16. 16. B. Bandriyana, A. K. Rivai, J. H. Prajitno, and A. Dimyati, Adv. Mater. Res. 1123, 356–359 (2015). https://doi.org/10.4028/www.scientific.net/AMR.1123.356, Google ScholarCrossref
  17. Published by AIP Publishing.