Published Online: 01 October 2008
Accepted: August 2008
Appl. Phys. Lett. 93, 132111 (2008); https://doi.org/10.1063/1.2992057
more...View Affiliations
  • 1Institute of Semiconductor Electronics, RWTH Aachen University, Sommerfeldstraße 24, 52074 Aachen, Germany
  • 2Central Facility for Electron Microscopy, RWTH Aachen University, Ahornstraße 55, 52074 Aachen, Germany
  • a)Electronic mail: berghoff@iht.rwth-aachen.de.

Charge transport through SiO2SiSiO2 double-barrier structures (DBSs) and SiO2 single-barrier structures is investigated by low temperature I-V measurements. Resonant tunneling signatures accompanied by a negative differential conductance are observed if silicon quantum dots (Si QDs) are embedded in the amorphous SiO2 matrix. The I-V characteristics are correlated with the morphology of Si QDs extracted from transmission electron microscopy and photoluminescence. Evidence for phonon-assisted tunneling at low voltages has been found in the DBSs. These results show the potential but also the limitation for charge extraction from Si QDs embedded in SiO2.
  1. 1. A. Irrera, F. Iacona, I. Crupi, C. D. Presti, G. Franz, C. Bongiorno, D. Sanfilippo, G. D. Stefano, A. Piana, P. G. Fallica, A. Canino, and F. Priolo, Nanotechnology https://doi.org/10.1088/0957-4484/17/5/044 17, 1428 (2006). Google ScholarCrossref, CAS
  2. 2. L. Wu, M. Dai, X. Huang, W. Li, and K. Chen, J. Vac. Sci. Technol. B https://doi.org/10.1116/1.1676527 22, 678 (2004). , Google ScholarCrossref, CAS
  3. 3. N.-M. Park, S. H. Kim, and S. Maeng, Appl. Phys. Lett. https://doi.org/10.1063/1.2360888 89, 153117 (2006). , Google ScholarScitation
  4. 4. G. Conibeer, M. Green, R. Corkish, Y. Cho, E.-C. Cho, C.-W. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, T. Puzzer, T. Trupke, B. Richards, A. Shalav, and K.-L. Lin, Thin Solid Films 51, 654 (2006). , Google ScholarCrossref
  5. 5. Z. Pei, A. Y. K. Su, H. L. Hwan, and H. L. Hsiao, Appl. Phys. Lett. https://doi.org/10.1063/1.1861129 86, 063503 (2005). , Google ScholarScitation
  6. 6. M. Fukuda, K. Nakagawa, S. Miyazaki, and M. Hirose, Appl. Phys. Lett. https://doi.org/10.1063/1.118816 70, 2291 (1997). , Google ScholarScitation, CAS
  7. 7. A. Surawijaya, H. Mizuta, and S. Oda, Jpn. J. Appl. Phys., Part 1 45, 3638 (2006). , Google ScholarCrossref, CAS
  8. 8. H. Ikeda, M. Iwasaki, Y. Ishikawa, and M. Tabe, Appl. Phys. Lett. https://doi.org/10.1063/1.1603352 83, 1456 (2003). , Google ScholarScitation, ISI, CAS
  9. 9. C. R. Wang, M. Bierkandt, S. Paprotta, T. Wietler, and K. R. Hofmann, Appl. Phys. Lett. https://doi.org/10.1063/1.1853522 86, 033111 (2005). , Google ScholarScitation
  10. 10. B. Berghoff, R. Rölver, D. L. Bätzner, B. Spangenberg, and H. Kurz, Proceedings of the 22nd European Photovoltaic Solar Energy Conference, 2007 (unpublished), p. 571. , Google Scholar
  11. 11. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1997), p. 265. Google Scholar
  12. 12. T. Mchedlidze, T. Arguirov, S. Kouteva-Arguirova, G. Jia, M. Kittler, R. Rölver, B. Berghoff, M. Först, D. L. Bätzner, and B. Spangenberg, Thin Solid Films 516, 6800 (2008). Google ScholarCrossref, CAS
  13. 13. S. Horiguchi, M. Nagase, K. Shiraishi, H. Kageshima, Y. Takahashi, and K. Murase, Jpn. J. Appl. Phys., Part 2 https://doi.org/10.1143/JJAP.40.L29 40, L29 (2001). , Google ScholarCrossref, CAS
  14. 14. E. Ungersböck, S. Dhar, G. Karlowatz, V. Sverdlov, H. Kosina, and S. Selberherr, IEEE Trans. Electron Devices 54, 2183 (2007). , Google ScholarCrossref
  15. 15. S. Dhar, E. Ungersböck, H. Kosina, T. Grasser, and S. Selberherr, IEEE Trans. Nanotechnol. 6, 97 (2007). , Google ScholarCrossref
  16. 16. C. Petit, G. Salace, and D. Vuillaume, J. Appl. Phys. https://doi.org/10.1063/1.1775299 96, 5042 (2004). , Google ScholarScitation, CAS
  17. © 2008 American Institute of Physics.