Abstract
A study on the electrochemical performance of LiFePO4 based cylinder cell battery has been done. The measurements have been carried out using cyclic voltametry (CV), charge-discharge (CD), and electrochemical impedance spectroscopy (EIS). The CV profiles showed that the battery exhibited anodic (charge) peak and chatodic (discharge) peak when scanned between 2.5 and 4.2V at various scan rate of 1 to 0.05 mV/s. The CD result showed that the battery capacity was 700 mAh exhibited excellent capacity retention with efficiency was about 100% after 100 cycles. From EIS measurement, it was also observed that the battery resistance decreased with the state of charge.
REFERENCES
- 1. Scrosati B, Garche J. J Power Sources. 2010;195:2419–30. https://doi.org/10.1016/j.jpowsour.2009.11.048, Google ScholarCrossref, CAS
- 2. Long Y, Shu Y, Ma X, Ye M. Electrochim Acta. Elsevier Ltd; 2014;117:105–12. https://doi.org/10.1016/j.electacta.2013.11.106, Google ScholarCrossref, CAS
- 3. Swain P, Viji M, Mocherla PSV, Sudakar C. J Power Sources. Elsevier B.V; 2015;293:613–25. https://doi.org/10.1016/j.jpowsour.2015.05.110, Google ScholarCrossref, CAS
- 4. Kartini E, Nakamura M, Arai M, Inamura Y, Nakajima K. Solid State Ionics. 2014;262:833–6. https://doi.org/10.1016/j.ssi.2013.12.041, Google ScholarCrossref, CAS
- 5. Kartini E. AIP Proceeding “5th International Conference on Women in Physics, Waterloo, Canada, 5-8 August 2015.” 2015. p. 1. Google Scholar
- 6. Yang Y, Liao X-Z, Ma Z-F, Wang B-F, He L, He Y-S. Electrochem commun. Elsevier B.V.; 2009;11(6):1277–80. https://doi.org/10.1016/j.elecom.2009.04.021, Google ScholarCrossref, CAS
- 7. Li-Xia Yuan, Zhao-Hui Wang, Wu-Xing Zhang, Xian-Luo Hu, Ji-Tao Chen Y-HH and JBG. Energy Environ Sci., 2011;4:269–84. https://doi.org/10.1039/C0EE00029A, Google ScholarCrossref, CAS
- 8. Tang H, Si Y, Chang K, Fu X, Li B, Shangguan E, et al. J Power Sources. Elsevier B.V; 2015;295:131–8. https://doi.org/10.1016/j.jpowsour.2015.06.145, Google ScholarCrossref, CAS
- 9. Tian Z, Zhou Z, Liu S, Ye F, Yao S. Solid State Ionics. Elsevier B.V.; 2015;278:186–91. https://doi.org/10.1016/j.ssi.2015.06.017, Google ScholarCrossref, CAS
- 10. Bi H, Huang F, Tang Y, Liu Z, Lin T, Chen J, et al. Electrochim Acta. Elsevier Ltd; 2013;88:414–20. https://doi.org/10.1016/j.electacta.2012.10.050, Google ScholarCrossref, CAS
- 11. Tian Z, Liu S, Ye F, Yao S, Zhou Z, Wang S. Appl Surf Sci. Elsevier B.V.; 2014;305:427–32. https://doi.org/10.1016/j.apsusc.2014.03.106, Google ScholarCrossref, CAS
- 12. Jahja AK, Honggowiranto W, Kartini E. Solid State Ionics, Proc Asian Conf, 13th. World Scientific Publishing Co. Pte. Ltd.; 2013. p. 490–6. Google Scholar
- 13. Park CK, Park S Bin, Oh SH, Jang H, Cho W Il. Bull Korean Chem Soc. 2011;32(3):836–40. https://doi.org/10.5012/bkcs.2011.32.3.836, Google ScholarCrossref, CAS
- 14. Wu G, Ran R, Zhao B, Sha Y, Su C, Zhou Y, et al. J Energy Chem. Dalian Institute of Chemical Physics, the Chinese Academy of Sciences. Published by Elsevier B.V.; 2014;23(3):363–75. Google ScholarCAS
- 15. Yu F, Zhang L, Lai L, Zhu M, Guo Y, Xia L, et al. Electrochim Acta. Elsevier Ltd; 2015;151:240–8. https://doi.org/10.1016/j.electacta.2014.11.014, Google ScholarCrossref, CAS
- 16. Honggowiranto W, Kartini E. AIP Proceeding (in press). 2015. Google Scholar
- © 2016 AIP Publishing LLC.
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.