18th IGORR 2017

Competence Development of Research Reactors Personnel in Indonesia

Sudi Ariyanto, Rini Rindayani, Rinawati Anwar, Djuartini Saleh

batan

18th IGORR 2017 Sidney, 5 November 2017 Center for Education and Training National Nuclear Energy Agency Email: asudi@batan.go.id

BATAN (National Nuclear Energy Agency of Indonesia)

Main duty: to conduct government duties in the field of research, development and utilization of nuclear energy

Functions, among many:

- Doing Assessment and preparation of the national policies in the field of research, development and utilization of nuclear energy
- Facilitation and provision of guidance towards the activities of government institutions in the field of research, development and utilization of nuclear energy.

Research Reactors of Indonesia

No	Research Reactor	Location	Power	Operation Commenced	Remarks
1	Triga 2000	Bandung	2 MW 1965: 240kW 1971: 1 MW 2000: 2 MW	February 20, 1965	Construction: 1 January 1964
2	Kartini (Karya Teknisi Indonesia)	Yogyakarta	100 kW 1979: 50kW 1981: 100kW	March 1, 1979	Construction: 13 November 1974
3	G.A. Siwabessy MPR	Serpong	30 MW	August 20, 1987	Construction: 1983

Yogyakarta

Serpong

Bandung

www.batan.go.id

Issues on human resources

increasing average age of personnel

the policy of zero growth by the government

the policy of moratorium of civil servants recruitment by the government

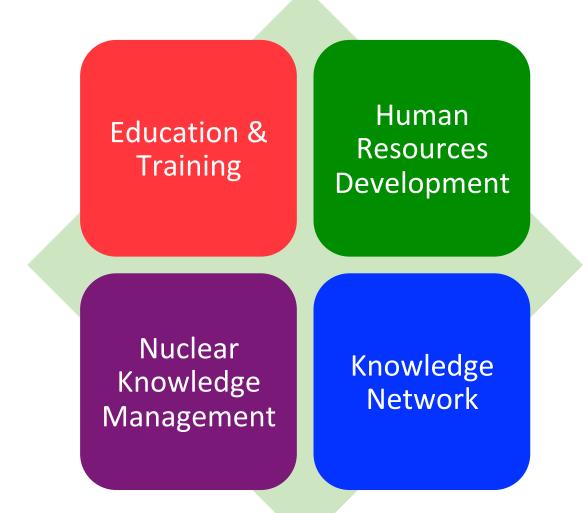
Impact of human resources policy

condition of scarcity of main competence holders

loss of main competence

www.batan.go.id

Outcomes of RR Personnel Competence Development

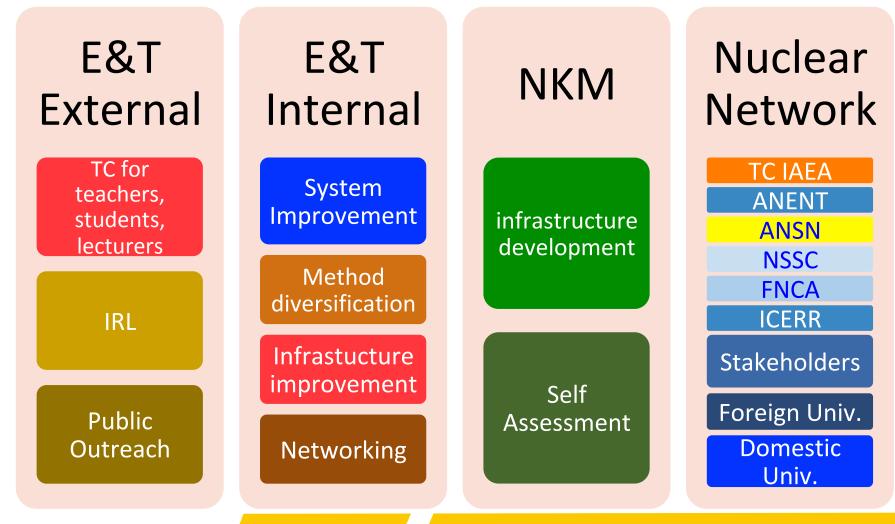

met prevented

research reactors can be operated in a safe, secure and sustainable

knowledge retension program can be done

IAEA Concept for Nuclear Capacity Building

Capacity Building of BATAN



Objectives:

Education & Training	Human Resources Development	Nuclear Knowledge Management	Nuclear Network
Building Competences		Preserving NK	Building competencies Stakeholders
Preserving nat. comp. on NST	Effective Human Capital Management	Preventing NK loss	involvement Public outreach
Public Outreach		Harvesting NK	Increasing public support

Activities for Capacity Building of BATAN

Activities:

The self-assessment addressed four fundamental questions (NAMA):

- What is needed? (Need),
- What is available and adequate to meet the needs? (Availability),
- What is missing or needs improvement in order to meet the needs? (Missing/gaps), and
- What actions are needed? (Actions).


NKM Self-Assessment

NKM Self-Assessment

every personnel who works in nuclear research, development, and application should be provided with adequate training in certain level of competence.

- After completing the trainings, personnel have to get license from BAPETEN.
- training program is manage for all employees,
- a grading model is used to set priority,
- modalities of classical and non-classical are blended,
- utilizing network with partners.

Modalities for Competencies Development

Education

Formal education

Domestics/Foreign Universities

Training

Clasical: Face to Face

Non Clasical: *e-learning*, mentoring, distance learning, coaching, etc.

Elements	Value
National Program	5
Required for Certification of Personnel	5
International Cooperation	4
Potential Loss of Knowledge	4
Program of BATAN	4
Program of Technical Centers	3
Program for Dissemination/Outreach	2
Others	1

Training Scheme Research Reactor Personnel

	Topic of Trainings			
Specialization	Basic	Junior	Senior	
	~ 3 years	3 ~ 6 years	6 ~ years	
Operation		Reactor Operator Reactor Kinetics and Dynamics Thermohydraulics	Reactor Supervisor Radioactive waste management Safety of Installation Operation	
	Radiation Protection	Reactor Heat Transfer	Reactor core modelling	
Maintenance	Radiation Measurements Working Health and Safety	Operator of Maintenance Reactor Reactor Instrumentation System Reactor Controlling Technique	Supervisor Maintenance Reactor Safety of Installation Operation Design Reactor Controll System	
	Basic of Nuclear Safety			
Safety	Safety Culture	Radiation Protection Officer Radioactive waste management Accounting of Nuclear Material Health and Safety Specific (Thermal, Electric, Mechanic etc)	Nuclear Safety Management Safety of Installation Operation Human Performance	

Critical Knowledges and Knowledge with Potential Loss

RR	Critical Knowledge	Potential Knowledge Loss	
А	Reactor core physics (Neutronik and Thermohydraulic Analysis), Radiation safety, Radiometric analysis, Process of radioisotopes (extraction of Tc-99m, Iodium-131, P-32, Br- 82 etc.), Marked-substances production, Radiochemistry, Radiometric analysis, Treatment of TRIGA Instrumentation and Control Systems, Calculation of fuel burn-up	Calculation of reactor fuel burn-up, Neutron flux measurement, NDT for ageing management, Analysis and development of Neutronic and thermohydraulics, Nuclear Instrumentation	
в	Reactor physics, Neutronic R & D, Reactor dosimetry, Core management, Reactor safety, Instrumentation and control, Reactor system technology, Operation and maintenance and utilization of reactor, Reactor technology, Reactor instrumentation and control.	Reactor Physics, Neutronic R & D, Reactor Dosimetry, Core Management, Reactor Safety, Instrumentation and Control, Reactor System Technology, Operation and Maintenance, and Utilization of Reactor Safety and security of radiation, nuclear and safeguard, Safety of transportation of radioactive substances and nuclear materials, Engineering of nuclear devices and facilities, Chemical process engineering	
С	Accounting of nuclear materials and reactor irradiation services, Electrical, Mechanical, Instrumentation and reactor control, Waste control of reactor facilities, and Safety of reactor operations	Radioactive waste control of reactor facilities, Pre and post irradiation services	

Actions for Preventing or mitigating potential loss of knowledge

Training program is focused on the subjects of knowledge with potential loss.

Managing coaching and mentoring on the subjects of knowledge with potential loss.

Knowledge sharing program by personnels who will be retired in 2-3 years ahead.

Intesifying utilization of knowledge network with the IAEA, ICERR and others.

Request the IAEA to support the implementation of nuclear knowledge management (NKM).

Conclussions

- Competence development of research reactors (RR) personnels in Indonesia is very important in order to operate and maintain the research reactors in safe, secure and sustainable manner.
- A training scheme for RR personnels has been established and implemented in regular basis to be in compliance with the regulation.
- A self assessment on human reources has been done and the result showed indication of demotivation and decline in employee competence since there are no major programs in the last 25 years, ageing of employees because of moratorium program for new recruitment, limited competency budgets, as well as existence of potential of knowledge lost.
- In order to handle the possible occurrence of knowledge loss, BATAN takes a policy and plan incorporating policies on education and training, knowledge sharing, knowledge network, as well as NKM

Terima Kasih

BADAN TENAGA NUKLIR NASIONAL

JI. Kuningan Barat, Mampang Prapatan Jakarta, 12710

(021) 525 1109 | Fax. (021) 525 1110

humas@batan.go.id

0h

badan_tenaga_nuklir_nasional

www.batan.go.id