Published Online: 13 October 1998
Accepted: February 1998
Journal of Applied Physics 83, 5945 (1998); https://doi.org/10.1063/1.367990
more...
A detailed investigation of the structure and magnetic properties of Tm2Fe17−xGax (x=0, 1, 2, 3, 4, 5, 6, 7, and 8) compounds has been performed by means of x-ray-diffraction, neutron-diffraction, magnetization, and ac-susceptibility measurements. Crystal-structure studies have shown that the prepared samples are single phase with the hexagonal Th2Ni17 for x⩽3 and the rhombohedral Th2Zn17 structure for x⩾5. In Tm2Fe13Ga4 the Th2Zn17 structure coexists with the Th2Ni17 structure. Substitution of Ga for Fe in Tm2Fe17 leads to an increase of the unit-cell volume, which is linear with the Ga concentration. In Tm2Fe17−xGax, the saturation magnetization at 1.5 K decreases linearly with increasing Ga content with a rate of 2.3 μB per substituted Ga atom. The Curie temperature is found first to increase with increasing Ga content, going through a maximum value of 485 K at about x=3, then to decrease. Between x=6 and 7, a minimum value of TC is reached and for higher x values TC increases again. X-ray-diffraction measurements on magnetically aligned Tm2Fe17−xGax powders show that the compounds with x⩽6 have an easy-plane type of magnetic anisotropy, whereas the compounds with x⩾7 exhibit easy c-axis anisotropy at room temperature. All Tm2Fe17−xGax compounds exhibit a spin-reorientation transition at low temperature, except for the sample with x=6, which shows an easy-magnetization direction perpendicular to the c axis in the temperature range from 5 to 300 K. For x⩽5, the spin-reorientation temperature is found first to increase with x and then to decrease, having a maximum value of 211 K at about x=3. In the samples with x⩾7, an easy-plane anisotropy was observed at low temperature, but an easy-axis preference of the magnetization at room temperature was observed. The results obtained for Tm2Fe17−xGax indicate that the mutually competing Tm- and Fe-sublattice anisotropies both change their sign with increasing Ga concentration.
  1. 1. J. M. D. Coeyand H. Sun, J. Magn. Magn. Mater. 87, L251 (1990). Google ScholarCrossref, CAS
  2. 2. X. P. Zhong, R. J. Radwanski, F. R. de Boer, T. H. Jacobs, and K. H. J. Buschow, J. Magn. Magn. Mater. 86, 333 (1990). , Google ScholarCrossref, CAS
  3. 3. K. S. V. L. Narasimhmand W. E. Wallace, in Magnetism and Magnetic Materials, edited by C. D. Graham and J. J. Rhyne, AIP Conf. Proc. No. 18 (AIP, New York, 1974), p. 1248. , Google Scholar
  4. 4. D. McNeelyand H. Oesterreicher, J. Less-Common Met. 44, 183 (1976). Google ScholarCrossref, CAS
  5. 5. F. Weitzer, K. Hiebl, and P. Rogl, J. Appl. Phys. 65, 4963 (1989). , Google ScholarScitation, CAS
  6. 6. T. H. Jacobs, K. H. J. Buschow, G. F. Zhou, X. Li, and F. R. de Boer, J. Magn. Magn. Mater. 116, 220 (1992). , Google ScholarCrossref, CAS
  7. 7. T. H. Jacobs, K. H. J. Buschow, G. F. Zhou, and F. R. de Boer, Physica B 179, 177 (1992). , Google ScholarCrossref, CAS
  8. 8. B. G. Shen, F. W. Wang, L. S. Kong, and L. Cao, J. Phys.: Condens. Matter 5, L685 (1993). , Google ScholarCrossref, CAS
  9. 9. Z. Wangand R. A. Dunlap, J. Phys.: Condens. Matter 5, 2407 (1993). , Google ScholarCrossref, CAS
  10. 10. R. A. Dunlap, Z. Wang, and M. Foldeaki, J. Appl. Phys. 76, 6737 (1994). , Google ScholarScitation, CAS
  11. 11. J. L. Wang, R. W. Zhao, N. Tang, W. Z. Li, Y. H. Gao, F. M. Yang, and F. R. de Boer, J. Appl. Phys. 76, 6740 (1994). , Google ScholarScitation, CAS
  12. 12. G. J. Long, G. K. Marasinghe, S. Mishra, O. A. Pringle, Z. Hu, W. B. Yelon, D. P. Middleton, K. H. J. Buschow, and F. Grandjean, J. Appl. Phys. 76, 5383 (1994). , Google ScholarScitation, CAS
  13. 13. Z. Hu, W. B. Yelon, S. Mishra, G. J. Long, O. A. Pringle, D. P. Middleton, K. H. J. Buschow, and F. Grandjean, J. Appl. Phys. 76, 443 (1994). , Google ScholarScitation, CAS
  14. 14. B. G. Shen, Z. H. Cheng, B. Liang, H. Q. Guo, J. X. Zhang, H. Y. Gong, F. W. Wang, Q. W. Yan, and W. S. Zhan, Appl. Phys. Lett. 67, 1621 (1995). , Google ScholarScitation, CAS
  15. 15. B. G. Shen, Z. H. Cheng, H. Y. Gong, B. Liang, Q. W. Yan, F. W. Wang, J. X. Zhang, S. Y. Zhang, and H. Q. Guo, J. Alloys Compd. 226, 51 (1995). , Google ScholarCrossref, CAS
  16. 16. Z. H. Cheng, B. G. Shen, B. Liang, J. X. Zhang, F. W. Wang, S. Y. Zhang, J. G. Zhao, and W. S. Zhan, J. Appl. Phys. 77, 1385 (1995). , Google ScholarScitation
  17. 17. S. R. Mishra, G. J. Long, O. A. Pringle, D. P. Middleton, Z. Hu, W. B. Yelon, F. Grandjean, and K. H. J. Buschow, J. Appl. Phys. 79, 3145 (1996). , Google ScholarScitation, CAS
  18. 18. H. Luo, Z. Hu, W. B. Yelon, S. Mishra, G. J. Long, O. A. Pringle, D. P. Middleton, and K. H. J. Buschow, J. Appl. Phys. 79, 6318 (1996). , Google ScholarScitation, CAS
  19. 19. E. E. Alp, A. M. Umarji, S. K. Malik, G. K. Shenoy, M. Q. Huang, E. B. Boltich, and W. E. Wallace, J. Magn. Magn. Mater. 68, 305 (1987). , Google ScholarCrossref, CAS
  20. 20. P. C. M. Gubbens, A. M. van der Kraan, T. H. Jacobs, and K. H. J. Buschow, J. Less-Common Met. 159, 173 (1990). , Google ScholarCrossref, CAS
  21. 21. G. J. Long, G. K. Marasinghe, S. Mishra, O. A. Pringle, F. Grandjean, K. H. J. Buschow, D. P. Middleton, W. B. Yelon, F. Pourarian, and O. Isnard, Solid State Commun. 88, 761 (1993). , Google ScholarCrossref, CAS
  22. 22. D. P. Middletonand K. H. J. Buschow, J. Alloys Compd. 206, L1 (1994). , Google ScholarCrossref, CAS
  23. 23. B. G. Shen, H. Y. Gong, B. Liang, Z. H. Cheng, and J. X. Zhang, J. Alloys Compd. 229, 257 (1995). , Google ScholarCrossref, CAS
  24. 24. Z. W. Li, X. Z. Zhou, and A. H. Morrish, Phys. Rev. B 51, 2891 (1995). , Google ScholarCrossref, CAS
  25. 25. B. G. Shen, B. Liang, F. W. Wang, Z. H. Cheng, H. Y. Gong, S. Y. Zhang, and J. X. Zhang, J. Appl. Phys. 77, 2637 (1995). , Google ScholarScitation, CAS
  26. 26. H. S. Li, R. C. Mohanty, A. Raman, C. G. Grenier, and R. E. Ferrell, J. Magn. Magn. Mater. 166, 365 (1997). , Google ScholarCrossref, CAS
  27. 27. Z. H. Cheng, B. G. Shen, B. Liang, J. X. Zhang, F. W. Wang, S. Y. Zhang, and H. Y. Gong, J. Phys.: Condens. Matter 7, 4707 (1995). , Google ScholarCrossref, CAS
  28. 28. S. Ridwan, H. Mujamilah, M. Gunawan, P. Marsongkohadi, Q. W. Yan, P. L. Zhang, X. D. Shen, Z. H. Cheng, N. Minakawa, and Y. Hamaguchi, J. Phys. Soc. Jpn. 65, 348 (1996). , Google ScholarCrossref, CAS
  29. 29. B. G. Shen, Z. H. Cheng, H. Y. Gong, B. Liang, Q. W. Yan, and W. S. Zhan, Solid State Commun. 95, 813 (1995). , Google ScholarCrossref, CAS
  30. 30. F. Izumi, Kobutsugaku Zasshi17, 37 (1985). , Google ScholarCAS
  31. 31. Z. W. Liand A. H. Morrish, J. Phys.: Condens. Matter 7, 6727 (1995). , Google ScholarCrossref, CAS
  32. 32. H. R. Kirchmayrand C. A. Poldy, J. Magn. Magn. Mater. 8, 1 (1978). , Google ScholarCrossref, CAS
  33. © 1998 American Institute of Physics.